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Chapter 1

Introduction

These lecture notes were written to provide you with a handy reference to the material that was presented
in the Machine Learning: Pattern Recognition course. It is not meant to replace the book of the course
[Bishop, 2007], rather, it is meant to illustrate topics that may seem a bit dry or emphasise subjects that
are deemed important to this class. It will often repeat what was said in the class, in the hope that this will
help you to understand the material better, but it is not meant to replace the lectures (read: I do hope that
you will not try to skip the lectures because you have the lecture notes. . . )

1.1 Machine Learning

There is still no universal consent as to what artificial intelligence really is, exactly. But most of the definitions
boil down to allowing machines to deal with (and excel in) their environment in an autonomous way. The
variation in the definitions depends very much on what we define the environment to be. Early AI restricted
the environment to, say, a chess game. Or to theorem proving. Those environments are inherently very
complex, and we are far from having “solved” those problems. But we have made a lot of progress, and in
some cases machines perform better than humans at those tasks. Deep blue beat Gary Kasparov in 1997.
However, the physical world we live in is inherently far more complex than such “toy” worlds; the main
inherent difficulty of the physical world is uncertainty.

Yet biological machines deal with the physical world quite well. So we know it can be done, and we
have quite a challenge to meet. The fact that we can do things ourselves doesn’t help us very much in
getting machines to do it: there are many problems we can solve very well (e.g., walking, understanding
speech, reading natural text, producing grammatically correct speech, recognising an emotion on somebody’s
face, . . . ), but we don’t really know how we do it. Each of these problems is very complex, and we don’t
know how to get a machine to do them. So if we ever want to have machines that can do these things, they’ll
have to learn to do them by themselves. And that’s what this course is about.

1.2 Smoothness, distributions and such.

So how can we know what to do with a new observation, from other observations that we’ve seen before.
As an example, how can we decide that two flowers are from the same species rather than from different
species? First, we need to find out what the observation is going to consist of. As humans, we have multiple
different senses that we rely on to learn what we’re interested in: vision, hearing, touch, smell, taste. Some
senses are better for some tasks than others, and one aspect of the learning process is to learn which sense to
use for what task, and how to combine these measurements. Similarly, in machine learning, we have access
to different sensors, measurements and preprocessing methods. So imagine that our sensors provide us with
length measurements of the petals and sepals of flowers. We could plot these, as in Figure 1.1. In this
plot, the different point styles indicate measurements from different varieties, and this provides us with the
following valuable insight: the datapoints corresponding to the different varieties generally occupy different
regions of the feature space. In general, the points will have a certain distribution in the space. In this case,

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


8 Introduction

0

1

2

3

4

5

6

7

P
et

al
le

n
gt

h
(c

m
)

4 5 6 7 8
Sepal length (cm)

Figure 1.1: Distribution of measurements of petal and sepal lengths for three varieties of iris flowers: Iris
Setosa (green circles), Iris versicolor (blue triangles) and iris virginica (red squares).

the datapoints from the three varieties we are looking at all have slightly different distributions, and we
can use that to differentiate between them. One way for a learning machine to differentiate between these
varieties, would therefore be to learn what the corresponding distributions are in the measurement space.
One key assumption that we will often make, is that the datapoints are independent (that is, the position
of a datapoint depends on what class it belongs to and, given that class, not on the positions of the other
datapoints), and that they all have the same distribution in the space (they are identically distributed). We
call such datapoints “independent and identically distributed” or “i.i.d.”

1.3 Areas of Machine Learning

There are multiple ways in which machine learning can be organised. One frequently used taxonomy of
machine learning techniques classifies techniques and algorithms based on whether the desired output is
known. If this is the case, we call the problem a supervised learning problem. In this case, we possess a
number of training examples, for which we know the desired output. If the desired output is not known, the
problem is an unsupervised learning problem. In this case, we ask the machine to optimise some function,
but we do not really know what the output should be.

1.3.1 Supervised learning

Supervised learning problems are typically problems that humans can solve or know the answer to, but don’t
really know how to solve. Examples may be speech recognition, or weather prediction (simply try to predict
today’s weather based on last week’s measurements). These techniques are often classified according to their
purpose. We can discriminate between two great families of supervised machine learning techniques based
on this distinction:

Classification techniques Sometimes, the purpose of a machine is to discriminate between a finite number
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of classes. For example, we may want an intelligent car to be able to discriminate between pedestrians
and road signs, or a quality control robot to discriminate between correctly manufactured items and
manufacturing failures, etc.. This is a broad class of problems, and many different machine learning
techniques focus only on these.

Regression techniques In other settings, the purpose of a machine will be to output continuous values.
For example, we may want an intelligent car to be able to control the steering in such a way as to
stay on the road, or to control speed so as to bring us to our destination in a speedy, comfortable
and safe way, or we may want a machine to be able to predict the amount of rainfall for tomorrow.
Or the amount of electrical power that will be required at 5pm, tomorrow. Techniques that focus on
outputting such a continuous value are called regression techniques.

The problem of supervised learning can be approached from different angles, which again leads to a
taxonomy of methods:

Non-parametric methods As we mentioned, it is not possible to store all the measurement values that
might ever occur, and to store the desired answer for that measurement value. However, since we do
have some example values with corresponding label, we could store those (or a selection of those) and
perform classification or regression on new measurements based on how similar those measurements
are to the stored values. Such methods are called non-parametric methods.

Discriminant functions Another possible approach is to choose a function that will provide an output
of the desired format for a given input of the measurement’s format. For example, in a two-class
classification problem, we may chose a function that returns f(x) = 0 for a measurement x in class C1
and f(x) = 1 for a measurement in class C2. Learning then consists of finding values for the parameters
of this function, so that it performs correctly on the largest possible number of examples.

Model-based approaches Instead of finding a function that will hopefully provide us with the right output
given some input, we could also look at what the inputs look like for each possible output. In other
words, we build a model of the data, and use it to perform the task at hand. To do this, we need
to assume that the data’s distribution can be described by a probability density function of a certain
family (often, the Gaussian distribution is used for this), and we then need to estimate the parameters
of that distribution. When we know the distribution of the data for each possible class, we can compute
the probability that a new datapoint should be seen if it belonged to any of the classes, and based on
that we can compute the probability that a datapoint belongs to any given class. The big advantage of
this method is that it is possible to not only provide the most likely classification, but also a confidence
estimate of that classification.

1.3.2 Unsupervised learning

Unsupervised learning techniques are given the measurements, but no information as to what we expect to
obtain from this data. Such techniques can be divided into two broad categories: clustering and dimension-
ality reduction.

Clustering Clustering deals with the problem of trying to group data by identifying some structure in the
data, when no corresponding labels are known. This is something that humans excel at, but that is
very hard to evaluate objectively. Finding the “correct” number of clusters is an especially challenging
task. Clustering can be very useful as a form of data compression: it is often not necessary to know
what the measurement was in order to perform a given task: knowing which cluster it belonged to is
often enough. For example, consider the task of predicting a plane’s speed from its size. It is probably
enough to know that a plane’s size falls in the “tourism”, “fighter jet” or “commercial transport”
category in order to be able to make the prediction. The precise size measurements are not relevant.

Dimensionality reduction It is often possible to make many measurements simultaneously, yielding very
high-dimensional data. As an example, consider a digital camera. Such a camera may have a few million
sensors, each registering how much light fell on them during a given time span. Each picture taken with
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Figure 1.2: Example of some measurements that might be used for clustering. Humans will readily detect
two clusters in this data. But how did we do that? Most importantly, why don’t we see three clusters in
there?
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such a camera may therefore be seen as a very high-dimensional vector of measurements. We cannot
list all the possible images that such a sensor could take, because there are far too many possibilities
— even though this number is finite. We do know, however, that real images will have characteristics
that limit the number of possible valid images. For example, most pairs of neighbouring pixels in a
real image will have very similar colour and intensity. We can therefore reduce the dimensionality of
the datapoint without discarding any relevant information. Automated techniques to do this are called
dimensionality reduction techniques.
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Chapter 2

Math preliminaries

There are a few mathematic basics that we need to be familiar with for this course. They may require some
time getting acquainted with or, if you have already seen these things in detail before, they may benefit from
being refreshed. In this chapter, we briefly review vector and matrix arithmetic, probability theory, and
function differentiation. We do not go into much detail: we merely review those concepts that are needed
for our purposes.

2.1 Vectors

The first concept we must have a look at, are vectors. Vectors define a magnitude and a direction in a space.
In machine learning, vectors are typically feature vectors, consisting of the measurement of a set of features.
The N -dimensional vector v is defined as:

v =

 v1

...
vN

 (2.1)

We will follow the convention that a vector is denoted by a boldface lowercase letter. We can define the
sum of two N -dimensional vectors a and b as

a + b =

a1

...
an

+

b1...
bn

 =

a1 + b1
...

an + bn

 (2.2)

Geometrically, the vector sum and the corresponding multiplication of a vector with a scalar are illustrated,
in two dimensions, in Figure 2.1. In general, the definition of a vector depends on the space it is defined
in, but we limit ourselves to Hilbert spaces, i.e., a generalisation of the Euclidean space to more than three
dimensions. We define the dot product, inner product or scalar product (lots of names for the same thing) of

a

ba + b

a a a

b
3a + b

Figure 2.1: Geometric illustration of the vector sum, in two dimensions
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two vectors a and b, as follows:

a · b = a>b =

N∑
i=1

aibi (2.3)

= a1b1 + · · ·+ aNbN (2.4)

We can now define important concepts:

The length or 2-norm of a vector

|a| =
√

a · a (2.5)

The angle between two vectors is related to the inner product as:

a · b = |a||b| cos θ (2.6)

A unit vector is a vector whose length equals one: |a| = 1

Vector projection If a is a unit vector, the inner product a ·b = |b| cos(θ), is the length of the orthogonal
projection of b onto a. Here θ is the angle between a and b (see Figure 2.2). If a is not a unit vector,
this result is scaled by the length of a. We shall rely on vector projection pretty extensively when
discussing dimensionality reduction, so it is important you understand this concept.

b a

|b| cos θ

θ

Figure 2.2: Vector projection in two dimensions, where a is a unit vector

Linear independence Two vectors are linearly independent if their inner product is zero (θ = 90o; they
are orthogonal).

2.2 Matrices

Matrices are arrays of scalars, called the entries of the matrix, and are denoted with uppercase bold letters.
A matrix of order m×n has m rows and n columns. A vector can therefore be seen as matrix of order n×1.
Matrix addition is defined similarly to vector addition:

A =

a11 · · · a1m

...
. . .

...
an1 · · · anm

 B =

b11 · · · b1m
...

. . .
...

bn1 · · · bnm

 (2.7)

A + B =

a11 + b11 · · · a1m + b1m
...

. . .
...

an1 + bn1 · · · anm + bnm

 (2.8)

The matrix product is similar to the vector inner product, where the inner product is applied to every
combination of a row in A with a column in B. It is only defined for matrices of order n ×m and m × p
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(where the number of columns of A equals the number of rows of B), as follows:

A =

a11 · · · a1m

...
. . .

...
an1 · · · anm

 B =

 b11 · · · b1p
...

. . .
...

bm1 · · · bmp

 (2.9)

AB =

a11b11 + · · ·+ a1mbm1 · · · a11b1p + · · ·+ a1mbmp
...

. . .
...

an1b11 + · · ·+ anmbm1 · · · an1b1p + · · ·+ anmbmp

 (2.10)

Based on these definitions, a few special matrices and matrix operations can be defined:

• The unit matrix or identity matrix, for which all entries are zero except the entries on the diagonal:

I =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 (2.11)

As a consequence, AI = IA = A

• The inverse matrix of a square matrix (i.e., a matrix of order n× n), is defined such that

AA−1 = A−1A = I (2.12)

Computing the inverse of a matrix is, in general, an expensive operation. It is, however, very useful in
lots of situations.

• The transpose of a matrix: A> is defined such that if A = B>, aij = bji.

• Eigenvectors and eigenvalues. An eigenvector and eigenvalue of a matrix A are a vector v and a scalar
λ, such that

Av = λv (2.13)

In other words, a vector v such that premultiplying it with the matrix A changes its length, by λ, but
not its orientation. Such eigenvalue–eigenvector systems have many applications, and they will come
back occasionally during the course.

2.3 Probability theory

A lot of what we will see this year is based on the theory of probabilities. This theory is simple and elegant,
and extremely powerful. In probability theory we consider random variables, which we denote with capital
letters. These variables can take different values with some probability; when a random variable takes a
value, we call this an instantiation. Instantiations are denoted with lowercase letters, and the probability
that a random variable, say A takes on the value a is denoted p(A = a), often shortened to p(a) for brevity.
So for example, let R be a random variable denoting whether it is raining in Amsterdam. This variable can
take the following values: r, indicating that it is raining and ¬r, indicating that it is not. The probability
that it is raining at any given point in time is then given by p(r). The expression p(R) could be used to
indicate the probability distribution over all possible values of R and would, in this case, correspond to the
vector (p(r), 1− p(r))>.

This probability is in general of course very high, but it will be very different in summer and in winter:
it will be higher in summer, and lower in winter (because then it is either foggy, or it snows, or it hails. Or
I’m abroad, in which case the weather is probably lovely in Amsterdam.) This brings us to the concept of
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conditional probabilities: the probability that it rains given that it is winter (w) is denoted p(r|w). Notice
that this does not tell us the probability that it is winter, nor the probability that it rains “in general” —
called the marginal probability that it rains: in order to know that, we would need to know the probability
that it is winter (which seems to be a lot more than 0.25 around here). The joint probability that it is raining
and it is winter, is denoted by p(r, w). The complete joint probability distribution can then be written as:

P (R,W ) =

[
p(r, w) p(r,¬w)
p(¬r, w) p(¬r,¬w)

]
(2.14)

Probability theory is based on the following two axioms:

If |= A, then p(A) = 1 (2.15)

If ¬(A ∧B), then p(A ∨B) = p(A) + P (B) (2.16)

These axioms mean that if an event is always true, the probability of that event is one and if two events are
mutually exclusive, the probability of one or the other being true is the sum of their respective probabilities.

All other theorems of probability theory derive from these axioms. Below, we give the most important
rules of probability, which we will use time and again during this course. We derive the first two for binary
variables, just to convince you that the above axioms are all we need to develop probabilistic reasoning.

The probability p(¬a) = 1− p(a) This follows directly from the axioms above: a and ¬a are mutually
exclusive, so that p(a∨¬a) = p(a)+p(¬a). Moreover, |= a∨¬a, and therefore, p(a∨¬a) = p(a)+p(¬a) =
1.

Sum rule of probabilities The sum rule of probabilities states that p(a, b) + p(a,¬b) = p(a). We can
prove this as follows:

a |= a ∧ (b ∨ ¬b) (2.17)

= (a ∧ b) ∨ (a ∧ ¬b) (2.18)

Therefore, since those are mutually exclusive, p(a) = p(a, b) + p(a,¬b).
We have shown this for binary random variables, but the proof can be extended to multinomial variables
(variables that can take more than two values) and continuous variables (variables that can take any
value between ±∞). When the joint probability of two variables is known, the process of computing
the probability of one variable independently from the other is called marginalisation. This resulting
probability is called the marginal probability

Product rule of probabilities The joint probability of two events a and b, written p(a, b), can be decom-
posed as follows:

p(a, b) = p(a|b)p(b) . (2.19)

This is read as “The probability of a and b equals the probability of a given b times the (marginal)
probability of b”

2.3.1 Bayes’ theorem

One of the most famous theorems of probability theory, and certainly an extremely valuable one in machine
learning, is Bayes’ theorem. This theorem states that

p(a|b) =
p(b|a)p(a)

p(b)
(2.20)

The theorem is easy to prove from the product rule of probabilities:

p(a|b)p(b) = p(a, b) = p(b|a)p(a) (2.21)

p(a|b) =
p(b|a)p(a)

p(b)
(2.22)
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(b)

0 1

50% Enschede

80% Amsterdam

10% Rotterdam
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(d)
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0 1
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Amsterdam

57%
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Figure 2.3: Graphical representation of the probability mass assigned to the various instantiations described
in our hypothetical example (see text for details)

2.3.2 Dealing with probabilities, the Graphic Novel

The basic rules of probabilities are quite straightforward and provide us with an extremely powerful tool,
but their interpretation and the intuitive grasp is elusive and may sometimes be hard to obtain. Dealing
with probabilities is something that requires practice. In this section, I want to walk us through a — purely
hypothetical — example and illustrate it graphically.

Let us consider the the following situation.1 It is 3 o’clock in the morning. Pouring rain slowly awakes a
lonely student on a park bench. As he regains approximate consciousness, our soggy hero wonders where he
is. For reasons of his own, he does not wonder how he got there. To answer this burning question, he has at
his disposal some basic facts of his life:

1. He must be either in Enschede, Amsterdam or Rotterdam. Those are the only cities where his present
predicament could conceivably befall him. But if he had no further information, he would be equally
likely to be in any of these cities.

2. Based on his extensive past experience, our student knows more, however. He knows that when he
goes out in Enschede, the next morning he does not remember what happened half of the time. In
Amsterdam, things are even worse, he blacks out in 80% of the cases. In Rotterdam, however, he tends
to be very reasonable and this kind of situation has only happened to him about 10% of the time.

Armed with these facts, and with his intimate familiarity with the basic tools of probability, our young
friend starts to figure out where he is. The prior probability that the city he is in is Enschede, Amsterdam

1Any resemblance to actual persons, living or dead, is purely coincidental
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or Rotterdam is the same in all cases: p(C = e) = p(C = a) = p(C = r) = 1
3 . This is illustrated graphically

in Figure 2.3 (a). The fact that he has trouble remembering the finer details of what happened last night
depends on the city he is in, and can be formalised as p(M = ∅|C = e) = 0.5, p(M = ∅|C = a) = 0.8 and
p(∅|C = r) = 0.1. This is shown in Figure 2.3 (b), and can now be used to compute the joint probability of
the city the student is in, and whether he would black out in that city. This is illustrated in Figure 2.3 (c),
which shows the probabilities p(M = ∅, C = e), p(M = ¬∅, C = e), p(M = ∅, C = a), p(M = ¬∅, C = a), . . .
In general, this is p(C,M).

Now our student may not be at the zenith of his mental capacities, but he can still do Bayesian inference.
He knows that the probability that he is in a particular city, say Enschede, p(C = e|M = ∅) or p(e|∅) for

brevity, can be computed using Bayes’ theorem: p(e|∅) = p(∅|e) p(e)
p(∅) . Of these, p(∅) is not readily available to

our student’s addled brain, although it is hovering near the surface of his consciousness: he knows p(C,M)
(Figure 2.3 (c)), what he needs is the subset of that probability that corresponds to p(M = ∅), which he gets
by going over all the cities he might be in and adding up the probabilities that he might be in those cities
and blacking out in there: p(∅) =

∑
c p(C = c,M = ∅), which is illustrated in Figure 2.3 (d). Now he does

realise that M = ∅ is a given, so using Bayes’ rule, he rescales all the p(∅, C) so that, effectively, p(∅|∅) = 1.
This is illustrated in Figure 2.3 (e).

Integrating new evidence But the hero of our story is not done yet. He is, by now, getting thoroughly
soaked, and he knows that the current weather is not related to his being there in the first place. At least,
he tries very hard to convince himself that, even though this kind of stuff seems to happen to him all the
time, no, there is no rain god and the bastard does not hate him. No!

So, having done this bit of mental morning gymnastics, he proceeds to infer where he is, assuming that
R⊥⊥M |C: rain is conditionally independent of his memory loss given the city he’s in (in other words, it’s not
because he’s here and he’s feeling under the weather that the weather is crap). His current belief is that he
is in Enschede with a probability of approximately 36%, in Amsterdam with 57% and in Rotterdam with 7%
(Figure 2.3 (e), repeated in Figure 2.4 (a) for convenience). He knows that the climate is different in these
cities: Enschede has a deeply continental climate, while Amsterdam and Rotterdam have gentle maritime
climates. The probability that you’ll wake up soaked in rain at three in the morning at this time of year is
80% in both Amsterdam and Rotterdam, but only 20% in Enschede (Figure 2.4 (b). So our disciple of the
reverend applies his mentor’s theorem all over again to update his belief of his location: he computes the joint
probability of rain and location (Figure 2.4 (c)), marginalises out the location to get the probability that
it rains (Figure 2.4 (d)) and computes the posterior probability that he is in any of these cities (Figure 2.4
(e)). He is now pretty sure that he must be in Amsterdam.

This capacity to apply Bayes’ theorem repeatedly, taking the posterior of the previous iteration as prior
for the next iteration, makes Bayesian inference extremely powerful. Keep in mind, however, that this
recursive application is only valid if the observations are independent (given the state of the variable we are
trying to estimate).

Logic Probability theory and the application of Bayes’ rule can be seen as an extension to predicate logic.
To illustrate this, at the moment our friend believes he is probably in Amsterdam and starts thinking about
going home when, suddenly, the blaring cry of a foghorn echoes through the night. The gentle throbbing is
instantly transformed into a splitting headache.

Now, the sound of a foghorn in the middle in a city is not a common occurrence. In fact, he has never
experienced this before, and there are good legal reasons for that. He does wonder for a moment whether he
may have imagined it. But the headache is still there, and is proof enough that he did not hallucinate . . . this
time. He wonders whether his friends may have something to do with it, and considers that if they wake up
in a cell tomorrow, at least they’ll be dry.

But if somebody sounded a foghorn, that would mean there is a cargo ship nearby, and that would mean
he must be in Rotterdam instead. Wait, he thinks, slow down — let’s do this properly. The probability
of hearing a foghorn in Enschede is zero; it’s a landlocked city, there are no cargo ships there. Seagoing
vessels can fare up Amsterdam, but essentially only cruise ships do so. OK, let’s say the probability of
hearing a foghorn in the city would be infinitesimally small, but not zero. Let’s say, 10−8, meaning that
one could hear a foghorn blaring through the city once in a hundred thousand nights. In Rotterdam, this
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Figure 2.4: Integrating further evidence in our purely fictional example. See text for imagined details.
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Figure 2.5: Illustration of a PDF, the Gaussian distribution with zero mean and unit variance (blue), and the
corresponding CDF (red). Notice how the CDF is below the PDF for some values of x: the CDF indicates
probabilities, the PDF indicates probability densities.

probability is similarly very small, but not nearly as small. Let’s say, once in a thousand nights. Again
applying Bayes’ rule to his previous belief that there was a 12% chance he was in Enschede, a 78% chance
he was in Amsterdam and a 10% chance that he was in Rotterdam, our evidence now becomes very small
(0 + .78 × 10−8 + 10 × 10−3 = 0.0100000078). In other words, our Epicurean friend finds himself in an
unexpected situation, namely: hearing a foghorn in the middle of the city in the middle of the night, but it
is the situation he observes. And it is a very informative observation: applying Bayes’ rule tells him there’s
a 99.99992% chance that he is actually in Rotterdam. If Amsterdam had no port, the likelihood of hearing
a horn there would have been zero as well, and the probability of being in Rotterdam would have been one
— our problem would have degenerated into a straightforward problem of predicate logic.

Having found his bearings, T. gets up and stumbles towards the railway station. If he hurries, he’ll be in
time for his beloved lecture in Machine Learning.

2.3.3 Probability Density Functions

When a random variable can take a finite number of values, the sum of the probability that the variable takes
on each of these values must be one (since the values are, of course, mutually exclusive). The probability
is distributed over the possible values, and is called a probability distribution. If the variable is continuous,
however, it can take on infinitely many values. The probability of any one value must therefore be zero.

We can, however, define a probability density function (PDF) to indicate how the probability is distributed
over the continuous space. Such a function allows us to compute the probability that the variable should
lie in a certain interval [a, b], by integrating the PDF over that interval. The integral of this function over
the complete domain of the function must be one, since any valid parameter value must lie in the function’s
domain. Closely related to the PDF is the cumulative density function (CDF), which is defined as

CDF(x) =

∫ x

−∞
PDF(v) dv (2.23)

The CDF is useful when we want to compute the probability that a value should lie in an interval, since from
the definition we get that p(x ∈ [a, b]) = CDF(b)− CDF(a). To illustrate this, Figure 2.5 shows a common
PDF, the Gaussian distribution, and the corresponding CDF. In practice, the difference between probability
density and probability distribution matter little, and in this course we will rarely distinguish between them.
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2.4 Function differentiation

In machine learning, we are often able to state a learning problem as the optimisation of some function.
Doing so will typically require the derivative of the function with respect its parameter or, if the function
has multiple parameters, the function’s gradient with respect to those.

Function optimisation is sometimes possible analytically, by finding the function’s gradient and setting it
equal to zero. If we can solve the resulting (set of) equation(s), we have found an optimum of the function.
Often, however, the function will be too complex to be able to find its optimum in closed form. In that
case, iterative methods such as gradient descent, or more advanced gradient-based methods will be required.
Here, we review some basic principles of function differentiation so that you are familiar with them when we
need them later on.

2.4.1 Basic differentiation

Here are some basic rules of differentiation:

∂

∂x
xa = axa−1 ∂

∂x
sinx = cosx (2.24)

∂

∂x
exp(x) = exp(x)

∂

∂x
cosx = − sinx (2.25)

∂

∂x
log(x) =

1

x

∂

∂x
tanx =

1

cos2 x
(2.26)

∂

∂x
a x = a

∂

∂x
ax = log(a)ax (2.27)

∂

∂x
f(x) g(x) = f(x)

∂

∂x
g(x) + g(x)

∂

∂x
f(x)

∂

∂x

f(x)

g(x)
=
−f(x) ∂

∂xg(x) + g(x) ∂
∂xf(x)

g2(x)
(2.28)

2.4.2 Chain rule of differentiation

Perhaps the most useful trick in the book when it comes to differentiation is the chain rule. It allows us
to compute the derivative of very complex functions analytically, and we will see many examples where it
comes in handy. As always, practice makes perfect, and this is one rule that is worth getting the hang of.

∂f(g(x))

∂x
=
∂f(g(x))

∂g(x)

∂g(x)

∂x
(2.29)

As an example, let’s prove Eq. (2.27) from the other basic rules, as follows:

∂

∂x
ax =

∂

∂x
exp(log(ax)) (2.30)

=
∂

∂x
exp(x log a) (2.31)

=
∂

∂x log a
exp(x log a)

∂

∂x
x log a (2.32)

= exp(x log a)
∂

∂x
x log a (2.33)

= ax log a (2.34)
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Figure 2.6: Illustration of the gradient of the function f(x1, x2) = −(cos2 x1 + cos2 x2)2. The corresponding
gradient is depicted as a vector field in the ground plane. Arrows point towards locations in the input space
for which the function value is higher.

2.5 Gradients

Consider a scalar function f of multiple variables x1, . . . , xN , denoted f(x). The gradient of the function
(with respect to x) is then defined as follows:

∇xf(x) =


∂f(x)
∂x1

...
∂f(x)
∂xN

 (2.35)

Each dimension of the gradient (indexed between 1 and N in our case) indicates the rate of increase of the
function along the corresponding dimension of x, and the resulting vector indicates the direction of steepest
increase of the function. This is illustrated as in Figure 2.6. It bears emphasising that the gradient is a
property of the input space. We are used to plotting functions as an extra dimension, but this dimension is
no part of the (input) space: conceptually functions are also properties of the space. It is, therefore, more
intuitive to show functions as a colour coding of the input space rather than as an extra dimension, and we
will sometimes do so, but the disadvantage of that is that it gives a less precise idea of the function’s shape.
All of this may seem trivial (or confusing, perhaps) now, but do bear it in mind, as this is a common source
of confusion when talking about Lagrange multipliers.

2.5.1 Function optimisation

As a consequence of this geometric interpretation, gradients are very useful for function optimisation. The
function will be optimal (i.e., either maximal or minimal) where the gradient equals the zero vector. If we
can solve the set of equations ∇f(x) = 0, then we have then found the optimum. Often, however, solving
this set will not be possible yet computing the gradient for any particular value of x will be possible. In that
case, we can maximise the function by starting at any position in the input space, and moving a certain step
size along the gradient, until its magnitude becomes too small. Clearly, to minimise the function, the same
procedure can be used with the negative gradient. Such an iterative procedure allows us to find a (local)
optimum for the function. Notice that the start point affects the result if the function has local minima.
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Initial location

Figure 2.7: Illustration of gradient descent, for the same function as depicted in Figure 2.6. See the text
for details. This figure shows 20 iterations of the algorithm, starting at the location indicated by the arrow
and with three different step sizes. The green points show the progress with too small a step size, the blue
points with too large a step size, while the red points show an example that converges correctly.

Running the algorithm multiple times with different start positions and keeping the best solution can help.
Also notice that choosing a correct step size is important. Figure 2.7 illustrates three different choices of
stepsize, starting from the same position. If the step size is too small (green), the algorithm takes forever
(i.e., too many iterations to be of useful value) to converge. If the stepsize is too large, the algorithm may
reach the neighbourhood of the goal very fast, only to overshoot it and oscillate around the optimum (blue).
The red line shows a good choice for the step size.

There are many improvements on the basic gradient descent algorithm, including adaptive step sizes
(which address the problem shown above) and the incorporation of terms simulating momentum (which can
help escaping sub-optimal local solutions). In the case of strongly non-convex functions, gradient descent
may still require many iterations and end up in a sub-optimal solution. Methods such as Newton–Ralphson
methods or approximations of such methods, such as (L)BFGS [Liu and Nocedal, 1989], can then be used.
These use the Hessian matrix, i.e., the matrix of second derivatives, in addition to the gradient: this provides
information about the curvature of the function, and can therefore result in more efficient optimisation.
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Chapter 3

Training and Testing

The key aspect of machine learning is, of course, that we learn from some examples in order to perform
some task on new examples. This may seem obvious, but it means that we cannot assume that if a machine
performs well on the training data, it will also perform well on new data. As an extreme example, one
strategy which would not work is the following: store all the training examples and check, for each new
datapoint, whether we have already seen it. If you know it, return the correct answer from the training
data, otherwise give a random answer. The problem is, of course, that the probability that we will ever see
the same datapoints again approaches zero for any realistic problem. Yet it is important to realise that the
above-mentioned strategy is the only one to give you an unbiased machine. It is also completely useless.

Instead, we need to find some function that performs well on unseen data, and learn it from training
data. Notice how many functions would perform perfectly on the training data — infinitely many. It is
therefore necessary to limit our solution space before we even begin learning.

3.1 A first look at classification

Suppose we want to create a machine that can distinguish between different varieties of sharks, based on
two measurements that are available to us, viz., their length and their speed in the water. We are given a
set of measurements, for which we know the desired class. The (normalised) training data might look as
depicted in Figure 3.1. How could we use this for classification? One very simple, yet very powerful, method
is to do the following: when given a new data point, find the closest data point in the training set and
give the new datapoint the same label. The resulting classification is depicted in Figure 3.2. Notice how
datapoints misclassifications will occur due to noise in the training dataset. One would probably want x1 to
be classified as green, and x2 to be classified as red. This is a very general problem that occurs frequently in
machine learning, and is called overfitting. We shall investigate this in depth with an example of regression,
in section 3.2, but in effect the problem is that our machine does not distinguish between the variations in
the data that are due to the process and the variations that are due to the noise. For now, let us mention
that we could improve the performance of our classifier by looking at more than one neighbour: we can
find the k nearest neighbours and use voting to assign the class label. This technique is therefore called
k-nearest-neighbours or kNN.

This very simple solution to our problem is very effective, sometimes surprisingly so, and will serve to
introduce some more general issues that we encounter more generally in machine learning. We will spend
some time analysing it, and it will serve to introduce measures of performance for classification. In general,
keep this technique in mind when doing machine learning: it often provides a powerful baseline to compare
more complicated techniques to.

Nevertheless, kNN has disadvantages which sometimes prevent it from being used in practical implemen-
tations.

1. The first problem is the space requirement. We must store and keep the complete training dataset in
order to perform classification.
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Figure 3.1: For a first attempt at classification, consider the dataset depicted here. We have two classes, the
green and the blue class. How should we classify the new datapoint indicated by the red square?
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Figure 3.2: Depiction of how new datapoints would be classified with a 1-nearest-neighbour classifier: new
datapoints falling in the areas shaded green would be classified as class 1, datapoints in the unshaded areas
would be classified as class 2.
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Figure 3.3: Illustration of the problems stemming from the use of Euclidean distance in kNN. In this example,
the red square represents a new datapoint that we want to classify. The data is two-dimensional, but one
dimension (sensor 1) is uninformative, while the other dimension (sensor 2) is a perfect predictor for the class
label. The discriminant that we obtain when using 1-NN is depicted: every datapoint falling in the shaded
area would be classified as belonging to the ‘blue triangle’ class. As we can see, our classifier misclassifies
the datapoint, even though we have a fully informative sensor reading.
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Figure 3.4: Curve-fitting example. The green line shows the process we are trying to learn, given by sin(2πx).
We do not observe this process directly, but rather get observations which are corrrupted by noise with a
Gaussian distribution. The green circles indicate data used for training, while the red squares indicate test
data.

2. More importantly, a significant computational cost is involved: for each new datapoint, we need to
search through the complete training set in order to find the nearest neighbours. This operation can
be sped up somewhat through smart partitioning of the data space, but is nevertheless expensive
compared to other techniques. In general, we do not really care about the computational cost of the
training phase, but we do want the machine to be fast during operation. kNN does the oposite; it is
fast during training and slow in operation.

3. A last problem with kNN is that it does not take the structure of the data space into account. To
illustrate this point, examine Figure 3.3. In this figure, we depict data for which we have two measure-
ments: sensor 1 and sensor 2. Of these, only sensor 2 is informative; sensor 1 is irrelevant. However,
if we use kNN to classify a new datapoint, denoted by a black dot, we get a misclassification. Please
notice that this problem is related to, but distinct from the problem depicted in Figure 3.2: the mis-
classification is due to the use of an inappropriate distance measure, not to noise in the data. Using
multiple neighbours will modify the discriminant slightly, but will in general not solve the problem.
We can still think of this as a form of overfitting (we’re overfitting on sensor 1, since we’re extracting
information where there is none), but that’s beside the point and actually even counterproductive. The
real point here is that we can learn from the training data that sensor 1 is noisy and sensor 2 is not.
A more flexible model can therefore learn to disregard sensor 1, but kNN cannot.

3.2 Polynomial curve fitting

Let us consider a curve-fitting example to illustrate the choices and difficulties involved in learning from
data. Consider the data shown in Figure 3.4, consisting of N (input,target) pairs, denoted (x, t). This
data was generating by computing sin(2πx) in the range [0..1], and measuring it at uniform intervals. The
measurement, however, is corrupted by Gaussian noise. In practice, of course, we will not know what process
generated the data, nor will we know the amount of noise in the measurements. It is illustrative, however,
to consider this artificial example in order to gain some understanding of the issues we are dealing with.

Our first restriction of our search space comes in right here. We want to learn the process that generated
this data, but we do not know what class of functions it belongs to. In this example, we will start by looking
at polynomial functions. These are functions of the form y(x,w0, . . . , wm) = w0 +w1x+w2x

2 + · · ·+wmx
m,

and we need to learn the weights w0, . . . , wm from the training data. We have m + 1 unknown weights, so
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we will need at least N = m+ 1 datapoints. We can the denote predictive function as follows using matrix
notation:

y(x,w) = φ>w, (3.1)

where φ is a vector containing the relevant powers of x and w is a vector of the corresponding weights:

φ =


1
x
x2

...
xm

 w =


w0

w1

w2

...
wm

 . (3.2)

We need to learn the value of the weights w in order to have a representation of what the generating process
is like: the best values for the weights are those that approximate the generating process most closely. Notice
that φ is a fixed set of transformations of the datapoint; the resulting approximation y(x,w) is a weighted
linear combination of these (non-linear) functions. This makes finding the weights simple — at least, it’s
much simpler than if the function had been a non-linear function of the weights.

For this first example, let us say that the best weight values, denoted w∗, are the values that result in
the smallest sum–squared error (ESSE):

w∗ = arg min
w

ESSE(y(x,w), t) (3.3)

= arg min
w

N∑
i=0

(y(xi,w)− ti)2 (3.4)

Again, we can write this in matrix notation by introducing the so-called design matrix Φ, where each row
consists of the features extracted from the corresponding datapoints, and the vector t, which consists of the
corresponding targets:

Φ =


1 x1 (x1)2 · · · (x1)m

1 x2 (x2)2 · · · (x2)m

...
...

...
. . .

...
1 xN (xN )2 · · · (xN )m

 t =


t1
t2
...
tN

 (3.5)

The vector of the predicted values for the given datapoints, y can then be written as

y =


y(x1,w)
y(x2,w)

...
y(xN ,w)

 = Φw, (3.6)

and the SSE can be written as

ESSE(w) = (t− y)>(t− y) (3.7)

= (t−Φw)>(t−Φw) (3.8)

So, how can we find the value of w that minimises ESSE(w)? To find the optimum of ESSE(w), we take
the first derivative with respect to the free parameters, and set it equal to zero:

∂

∂w
(t−Φw)>(t−Φw) = 0 (3.9)
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In The matrix cookbook [Petersen and Pedersen, 2006], we find that the derivative is given by −2Φ>(t−Φw),
and so we get:

−2Φ>(t−Φw) = 0 (3.10)

Φ>t−Φ>Φw = 0 (3.11)

Φ>Φw = Φ>t (3.12)

w = (Φ>Φ)−1Φ>t (3.13)

This may look a bit daunting at first, but it’s actually simple: we are given the design matrix Φ and the
vector of targets t, and we know algorithms to compute matrix products and matrix inverses. Computing
the vector w is therefore just a straightforward application of these algorithms. Alternatively, we can stop at
Eq. (3.12), which represents a system of N equations with m unknowns, where N is the number of datapoints
and m is the order of the polynomial: we have stable algorithms to solve these.

3.3 Overfitting and Generalisation

Now that we are equipped to fit a polynomial function to our training data, we have one more choice to
make: what should be the order of that polynomial? If we choose a low order polynomial, the function will
not fit the data very well. As we can see in Figure 3.4, we are given ten datapoints. The best we can do,
therefore, is to choose a ninth-order polynomial: then we must find the value of ten parameters, w0 . . . w10,
and we have a system of ten equations with ten unknowns, which we can solve exactly.

However, we are not really interested in how well the system performs on the training data. Instead,
we’re interested in how well it will perform on future data. Figure 3.5 shows what happens as the order of
the polynomial is increased,1 and shows how this affects both these errors: the error on the training dataset
— the training error — and the error on some other data generated from the same distribution — the test
error.

The best thing a zeroth-order polynomial can do, is to predict the mean of the data. It is independent
of the input x, and so the solution that minimises the error is the mean of the output. This does not fit
the generating process very well, and hence both the training error and the test error are pretty high. If
m = 1, we get a linear function, which is better: both the training and test error are reduced considerably.
Increasing this to m = 2 does not do much, but m = 3 is much better. This actually looks more like our
generating process, and both the training and testing errors are quite low. Increasing m further does not buy
us much, until we reach m = 9, where the polynomial function is capable of fitting all training datapoints
perfectly and our training error drops to zero. In order to do so, however, the fitted function needs to be
very ’squiggly’: it fits the training data perfectly, but looks nothing like the generating process. The error
on the test dataset shoots through the roof.

The lower-order polynomials illustrate so-called underfitting (also called oversmoothing): our machine is
not flexible enough to approximate the generating process, and is not capable of capturing all the relevant
information in the training data. Around m = 3 we obtain what is called good generalisation: the machine
captures the generating process well and performs well, both on the training data and on previously unseen
data. As we get to higher order polynomials, especially at m = 9, we get a severe case of overfitting. The
machine can fit the training data perfectly, including the noise that’s present in it. The resulting fit has zero
training error, but performs very badly on test data.

3.3.1 What affects overfitting

These are very general concepts, which are ubiquitous to machine learning. They occur in regression as
well as in classification, and a major aspect of creating effective learning machines is to be able to assess
and maximise generalisation. From the above example, we can see that multiple things affect how much a
machine overfits:

1This figure is actually an animation. The weird icons at the bottom of the figure are clickable controls that you can use
to step through the animation, play it, or vary the speed at which it is played. You need acrobat reader version 8 or above in
order to see the animation.
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Figure 3.5: Animation illustrating overfitting. As the order of the polynomial increases, the machine can
model ever more complex functions. When the number of parameters reaches the number of datapoints in
the training set, we can find parameters that fit the training data exactly, but at the cost of increased error
on the test set.
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Figure 3.6: Illustration of how overfitting is reduced as the amount of data is increased. In this example, a
ninth-order polynomial is fitted, without parameter penalisation, to training sets of increasing size. As the
size of the training set is increased, the resulting function becomes more similar to the original process.

Figure 3.7: Illustration of how the smoothness of the function varies as a function of the penalisation factor
λ. The machine overfits heavily when lambda is very small, and underfits when lambda becomes too large.
A validation set can be used to select a correct value for λ.
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Machine complexity The more flexible and complex a machine is, the more likely it is to overfit. Too
simple a machine will not learn the underlying process, and too complex a machine will fit the noise.
One way to avoid overfitting is therefore to select a machine of the right complexity for the given
problem and the given training data.

Amount of training data In the case of the above example, one must realise that a sine wave could
only be fitted exactly using a polynomial function of infinite order. However, in order to find the
correct parameters for such a polynomial, we would require infinite amounts of training data (not to
mention infinite computing resources, or infinite amounts of time.) In practice, we can use more flexible
machines to approximate the underlying process as we get more training data. This is illustrated in
Figure 3.6, where a ninth-order polynomial is trained with different training set sizes. As more data is
available for smoothing, the overfitting becomes less severe.

There is, unfortunately, no direct relation between the optimal complexity of the model and the amount
of training data, as it depends on how noisy the observations are (which we do not know.) However,
there are criteria that allow us to judge whether the model complexity is suitable for the available
training set size, such as the Akaike Information Criterion and the Bayesian Information Criterion.

Parameter values Even though a ninth-order polynomial may potentially result in very complex functions,
if all the parameter values were zero, we’d end up with a straight line at y = 0. In general, smaller
parameter values result in smoother functions, and a high-order polynomial may approximate the
generating process quite well, even with little training data, if we penalise large parameter values.

This is illustrated in Figure 3.7. In this case, we use a slightly more complex error function: instead
of minimising the SSE, we minimise a penalised sum-squared error. This cost function is as follows:

C(w) = ESSE(w) + λw>w, (3.14)

i.e., we minimise a weighted sum of the SSE and the sum of the squared weight values. Here, λ is an
externally set parameter to trade off the effect of the parameter penalisation and the fit to the data.
If λ = 0, we obtain the original polynomial function fitting seen before. As λ → ∞, the effect of the
data becomes negligible. We can minimise this new error function in the same way as before: take the
gradient with respect to w and set it equal to zero:

∂

∂w
C(w) = 0 (3.15)

−2Φ>(t−Φw) + 2λw = 0 (3.16)

−Φ>t + (Φ>Φ + λI)w = 0 (3.17)

(Φ>Φ + λI)w = Φ>t (3.18)

3.3.2 Avoiding overfitting

The most straightforward way to avoid overfitting, is by limiting the model’s complexity. Since we do not
have access to unlimited amounts of training data, the best machine that we will come up with, based on
the training data, will never be optimal on future data. By limiting the complexity of our machine, we can,
therefore, obtain results that perform well on future data. The question is then: how complex should our
machine be? We cannot use the training data to select the machine’s complexity, because the most complex
machine will always tend to fit the training data best.

One thing we could do, is to split the data we have access to into two part: one part for training, and one
part for evaluating whether we are overfitting. However, there are a few things we have to be careful about:

1. If we select a machine based on its performance on the data that wasn’t used for training, then that’s
in itself a form of training. If we had chosen a different partitioning of the data, another machine might
have turned out to look better. The machine’s performance on this data is, therefore, not an unbiased
estimate of its true performance. One possible solution to this problem is to split the available data
into three datasets:
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Figure 3.8: Illustration of k-fold cross-validation, for k = 4.

Training set This is the set of datapoints that we rely on to learn the model parameters

Validation set This set of datapoints allows us to select the model complexity or choose “hyperpa-
rameters” such as the parameter penalisation weight λ

Test set The set of datapoints that is used to evaluate the machine’s performance on unseen data.
These datapoints must not have been used in any way during the training phase, lest we obtain
a biased (and overly optimistic) estimate of the performance.

2. Splitting the available data into different sets, and only using part of it for learning is wasteful. It is
often the case that we have access to very limited amounts of training data, and discarding parts of it
can have a severe effect on the performance. One solution is to make the validation set very small, so
as to keep as much data as possible for training. The problem is then, of course, that the evaluation
on the validation set is noisy. This problem can be alleviated by using cross-validation: train the
machine k times on different splits (or “folds”) of the dataset, and test on the rest. This is illustrated
in Figure 3.8, where we split the data into 4 sets, 3 of which are used for training and one of which is
used for validation. When we have access to extremely limited amounts of data, it makes sense to use
as many folds as we have datapoints: this particular form of cross-validation is called leave-one-out
cross-validation.

Notice that cross-validation increases the amount of information that we can obtain from our dataset,
but that it carries an important computational cost. In practice, the amount of available data will
dictate how many folds we will use.

3. There is something inherently unsatisfying about adjusting the complexity of our machine to the
amount of available data. In reality, we would like our machine to be complex enough to be able to
represent the structure of the problem, independently of how much training data we have. We will
come back to this point when looking at a Bayesian approach to probabilistic modelling of the problem.

Why simplicity?

We have seen that we can avoid overfitting by reducing a machine’s complexity. This idea, which is often
referred to as Occam’s razor, is appealing and may make intuitive sense, but one would be warranted to
wonder why it is, really, that simplicity (rather than anything else) should be the objective to pursue.

There are different schools of thought on this, but they all basically converge to the same idea. I will try
to describe them briefly below, and then attempt to illustrate how they converge to the same thing.

No free lunch (NFL) The “no free lunch” idea basically says that we need some bias if we want to learn
anything about things that we haven’t observed directly. If any function is possible, any prediction is
possible anywhere except at the given training datapoints. A bias is necessary for generalisation to be
at all possible (this is called an “inductive bias”), but this idea does not indicate why any bias should
be better than another.

However, Figure 3.9 illustrates the difference of fitting a first order polynomial (f(x) = ax+ b) and a
second order polynomial (f(x) = ax2 +bx+c) based on the two given training points. The shaded area
indicates all possible predictions, for all functions that fit the training data. As we can see, allowing
more complex, flexible functions very soon becomes equivalent to having no bias at all. In this extreme
example, we assume that the observations have no noise at all, and assume that all functions that fit
our training data are equally probable.
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Figure 3.9: Illustration of inductive bias. In this example, we observe two datapoints, which we know to be
noiseless, and attempt to recover the function that produced this data. Figure (a) illustrates the recovered
first-order polynomial; Figure (b) indicates the possible results if a second order polynomial is used. In this
figure, a few functions are sampled that fit the data. There are, of course, uncountably infinitely many
quadratic functions that fit the data, and if they were all taken into account, the area of possible prediction
would be the shaded area: for any input value any output is possible, except for the precise input values
present in the training data, where only the corresponding output is possible.

Minimum description length (MDL) The idea of MDL is to use the model to compress the data. Since
the model can be used for prediction, we do not need to store the target values: it is sufficient to store
the model and the input values; the target values can be computed by the model. Of course, unless the
model is perfect, the computed predictions will contain errors: so for lossless compression we need to
store the difference between the actual target and the predicted target. However if the model performs
better than random, the prediction errors will be smaller than the targets, and will therefore require
fewer bits to encode.

The intuition is then that a model that provides the most compact representation is best. As a
consequence, we have an immediate trade-off between the model complexity (we need to store the
model itself, so we want to limit the number of bits needed to store that) and the prediction errors
(the better the predictions, the fewer bits are needed to store the errors).

Bayesian approach If we simply follow the axioms of probabilities to their logical conclusion, then we
should not limit complexity at all: all models that fit the data are possible, it’s just that some models
are more likely than others: our prediction should therefore take all possible models into account, each
model weighted by its posterior probability.

If we analyse this probabilistic approach more closely, it becomes clear why, if we don’t do the “right”
thing but approximate it by choosing just one model, then choosing a simple model rather than a
complex model is actually not a bad thing to do: the set of complex models also contains simple
models, and many complex models will have a “core” of a single simple model in common. If we then
sum over all models and weigh the models with their posterior probability, then each of the complex
models gets a low probability and so do the predictions of those models, but the common predictions
that correspond to the simple model are repeated more often and get a higher probability. To illustrate
this, notice how i n Figure 3.9, the linear function is present in the class of quadratic function as a
special case.
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3.3.3 Sidetrack: Overfitting in Pigeons

In a famous experiment from 1948 (Skinner, 1948), hungry pigeons were briefly and au-
tomatically presented with food, at regular intervals. There was no relationship between
the animal’s behaviour and the fact that food was given, yet the following pattern would
typically emerge: the pigeon would be doing something random, such as flapping a wing or
turning its head when the food would be given. The pigeon would then repeat that action
in the hope of calling the food back, and if the delay between the presentations of food is
not too long, the odds are that it is still doing whatever it believes triggers the coming of
food the next time that the food comes, so that the association is reinforced. In some cases,
the birds would develop very complex dances in the hope of getting more food.
This is a simple case of massive overfitting. There is no correlation between the two variables
(“behaviour” and “food”), but the pigeon massively overfits on the first datapoint. After
that, because of the original overfitting, the training set contains many instances where the
two variables co-occur and in this observed set there is a strong correlation between the two
variables. The collected dataset is then biased, because the observed datapoints are neither
independent nor identically distributed, which in turn leads to more overfitting.
The delay between presentations of food affects how independent the observations are, and
with long delays this reinforcement pattern does indeed disappear.

3.4 Nearest Neighbours, revisited

To avoid overfitting with our nearest neighbours classifiers, we can do a number of things. The most
commonly used solution is to look at multiple neighbours before deciding on the class prediction. For
example, one might look at the k = 3 nearest neighbours of a new datapoint, and use voting to decide on the
class label.2 Such a classifier is illustrated in Figure 3.10. Similar to our regression example of section 3.2,
large values of k lead to oversmoothing: the classifier loses its ability to find important structure in the
data. When using kNN, people will, therefore, generally use a validation set to determine k, the number of
neighbours to look at.

Another solution is to limit the number of prototypes or training data points. Looking back at Figure 3.2,
it is clear that the vast majority of the prototypes do not affect the classification outcome of a 1-nearest-
neighbours classifier. Moreover, we can identify some of the prototypes as being clearly responsible for
overfitting, so that we can limit overfitting by reducing the number of prototypes. Finally, reducing the
number of prototypes also reduces the computational complexity of a new classification. This can be an
important consideration in some cases. Different techniques have therefore been proposed to select a limited
number of prototypes when constructing the classifier.

3.5 Measuring Performance

The most straightforward measure of a classifier’s performance is its accuracy. This is defined as the number
of correctly classified datapoints over the total number of datapoints.

Accuracy =
#correct classifications

#datapoints
(3.19)

Equivalently, the error rate of the classifier can be used, which is defined as 1 − Accuracy. In the case of
two-class classification, we often consider that the datapoints belong to a positive and a negative class. It
is then customary to distinguish between true positives (TP, the number of datapoints from the positive

2Notice that, to avoid undecided votes, one should use odd values for k
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Figure 3.10: Example of a three-nearest-neighbours classifier (a) and a 19-nearest-neighbour classifier (b)
applied to the same data as in Figure 3.2. Notice how the 3-NN classifier is less prone to overfitting than the
1-NN classifier depicted in that figure, while the 19-NN classifier discards important structure in the data
(this can be verified with a validation set, but is also visible in the lower region of the plot)

class that are correctly classified), false positives (FP, the number of datapoints from the negative class that
are wrongly classified as positive), true negatives (TN) and false negatives (FN). The accuracy can then be
written as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.20)

However, these measures do not convey the complete picture: the classifier may make many more mistakes
confusing one class for the other than the other way around. Such information can be captured in a confusion
matrix. For the two-class problem, the confusion matrix looks as follows:

C =

[
TP FN
FP TN

]
. (3.21)

The rows correspond to the actual class, and the columns correspond to the output of the classifier. From
this, the following measures are often extracted, which are used more or less frequently depending on the
particular discipline people are working in:

precision =
TP

TP + FP
(3.22)

recall = sensitivity =
TP

TP + FN
(3.23)

specificity =
TN

FP + TN
(3.24)

For multiple classes, this is extended in the straightforward way: for m classes, we have

C =

n11 · · · n1m

...
. . .

...
nm1 · · · nmm

 (3.25)

where, again, nij represents the number of datapoints from class Ci that have been classified as belonging
to class Cj . The accuracy is, therefore, found by summing the elements on the diagonal and dividing by the
total number of elements.

3.6 Reject option

Sometimes we know that we are not very confident in our classification. In such cases, and if misclassification
carries a large cost, it may be better to reject the datapoint and let some other instance (such as a human
expert) deal with it.
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Figure 3.11: Animated illustration of the computation of an ROC curve. As we shift our discriminant to
increase the number of true positive classifications, we will also increase the number of false positives.

3.7 Receiver Operating Characteristic (ROC)

The accuracy of a classifier does not always give a very meaningful picture of how the classifier performs on
a real data. It is often the case that some misclassifications are worse than others. For example, consider
a machine predicting whether you have cancer from some blood analysis results: it would be dramatic if it
missed that you have cancer, and it would be much less damaging if it predicted cancer for a healthy person.
In order to have a more informative idea of a classifier’s behaviour as the decision threshold is changed, we
can plot a receiver operating characteristic (ROC) curve.

Figure 3.11 illustrates how such a figure is made. In this case, we have two classes: a positive class C+

and a negative class C−. Our measurements are one-dimensional, and are depicted in the x-axis of the left
plot. The distribution of the data is depicted, per class, above the data. If we vary our decision threshold
from −∞ to ∞, the number of correctly classified positive examples (indicated by the green shaded area)
increases. As we progress towards∞, we also start wrongly classifying negative examples as belonging to the
positive class, as indicated by the red shaded area. The ROC curve, shown in the right graph of Figure 3.11,
shows the relationship between the number of true positive and false positive classifications.

3.7.1 Area Under the Curve (AUC)

It is clear from the example above that we would like the curve to come as close as possible to (0, 1), where
all positive examples are correctly classified as such, and no negative examples are wrongly classified as
positive. A good measure of the performance of a classifier is therefore the area between the x-axis and the
ROC curve: the larger this area, the better the classifier performs under different threshold values. This
is shown in Figure 3.12. Here, we compare the area under the ROC curve for different class distributions,
modelled by Gaussian distributions in our classifier. As the classes overlap more, the area under the curve
decreases until it reaches one half when the classes are indistinguishable.
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Figure 3.12: Illustration of how the area under the curve changes as the classes become less separable. Note
that the AUC reflects how well the classifier can separate the classes, rather than how separable the classes
are in general
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Chapter 4

Linear discriminants

When doing classification, we are given some inputs that we want to assign a class label to. In effect, we
want to compute some function f of our inputs x which returns the class label C. Let us first look at a
two-class problem, and see how we can generalise the result to more than two classes later.

Figure 4.1 depicts some training data from a two-dimensional, two-class classification problem. We want
to find a binary function y(x) ∈ {C1, C2} that returns the correct class label for new data. We can construct
such a function by first defining a continuous scalar function y(x), and returning

f(x) =

{
C1 if y(x) > 0

C2 if y(x) < 0
(4.1)

The discriminant of such a function is then defined as the set of points where the output of the function
switches from one class to the other. In our case, this set of points is given by

y(x) = 0 . (4.2)

If this discriminant is given by a hyperplane in the input space (i.e., a point in 1D, a straight line in 2D, a
plane in 3D, etc.), it is called a linear discriminant. Classification functions with a linear discriminant are
the simplest classifiers we can devise, and those are the ones we shall focus on in this chapter.

We can now express our learning process in terms of finding a suitable function y(x) which is positive for
all elements of class C1 in our training set, and negative for all training examples of class C2. Somehow, we
would also like this function to be, in addition, positive for any novel examples of C1 and negative for novel
examples of C2. Such a linear function is depicted in Figure 4.2.

How can we find such a function?

4.1 Linear perceptrons

Linear perceptrons are an early attempt at solving the problem of linear classification. At the time, they
were inspired from the understanding of biological neurons. The idea was that each neuron has a few inputs
(dendrites) and an output (axon).1 The output would fire if the inputs were sufficiently stimulated. In linear
perceptrons, the inputs are continuous values, and the output is zero if the perceptron does not fire, and one
if it does. How much stimulation is required for the perceptron to fire is determined by the weights and the
bias of the perceptron, as follows:

f(x) = h(w0 +

N∑
i=1

wixi) (4.3)

= h(x>w) (4.4)

1While broadly correct, many different types of neural cells exist, and this is overly simplified compared to real neurons.
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Figure 4.1: Example data for a two-class classification problem.

Figure 4.2: Illustration of a linear function that would result in correct classification of the complete training
dataset. The corresponding discriminant is plotted as a blue line in the input space.
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where x = (1, x1, . . . , xn), and h(·) is the following step function:

h(x) =

{
+1 if x > 0

−1 otherwise.
(4.5)

Linear perceptrons are trained by minimising the number of misclassified examples. However finding
parameters w that minimise the number of misclassified datapoints is not trivial: indeed, since the error
function is discontinuous (it increases in steps of plus or minus one wherever a change in w causes a data-
point to be classified differently), we cannot compute the gradient of the error function with respect to the
parameters. Hence, we cannot perform regular gradient descent, and we certainly cannot find the optimal
value of w analytically. We can nevertheless train perceptrons based on the perceptron criterion.

4.1.1 Perceptron learning algorithm

We would like to find a function y(x) = x>w which is larger than zero for all examples in class C+ and
smaller than zero for the other examples. If we encode the target class label ti (corresponding to the ith
datapoint xi) as {+1,−1} for C+ and C− respectively, we would like all datapoints to satisfy

w>xi ti > 0 . (4.6)

We can optimise the value of w using the perceptron criterion, which associates zero error with datapoints
that are correctly classified, and an error of +1 with all misclassified datapoints. Thus, we try to minimise

Ep(w) = −
∑
n∈M

w>xn tn, (4.7)

where M is the set of misclassified patterns. We can now apply stochastic gradient descent to minimise
Eq. (4.7). The gradient of Ep(w) with respect to w at a misclassified datapoint xn is given by −xn tn. We
can, therefore, walk through the set of misclassified datapoints and modify the current w by subtracting a
fixed step size times the gradient (subtracting, because we are minimising). We can choose the step size to
be one, because the scale of w does not affect the location of the discriminant.2 At each iteration of the
algorithm, we therefore choose a misclassified point xn, and update w as

wnext = w + xntn (4.8)

This result is pretty amazing, because it was felt at the time that such a simple update rule was biologically
plausible. One could imagine a neuron, having received an input and produced the wrong output simply
increasing its internal ‘weights’ with that same input. Since then, a lot has been learned about the workings
of neurons and this particular model of neurological learning is not considered plausible anymore, but it was
still a great step forward.

A few things to note about the perceptron, are:

• The perceptron learning algorithm is guaranteed to diminish the error contribution of the datapoint
that is added to w, but the change in w may, of course, lead to new points being misclassified. The
global error is, therefore, not guaranteed to decrease at each iteration. Nevertheless, the perceptron
convergence theorem proves that if a solution exists (i.e., if the data is linearly separable), the percep-
tron learning algorithm is guaranteed to find it in a finite number of steps, although this number may
still be arbitrarily large. In practice, therefore, if the algorithm does not seem to converge, we cannot
tell whether this is due to the problem being non-linearly separable, or simply due to slow convergence.

• Even though the algorithm is guaranteed to find a solution if one exists, that particular solution is
not guaranteed to be particularly good. Figure 4.3 shows different solutions where no datapoints are
misclassified, and the perceptron learning algorithm would therefore quit. Some of these solutions
are much more likely to perform well on future data than others, but the perceptron criterion cannot
distinguish between them.

2The scale of w affects the ‘angle’ between the function and the input space, not the location of the hyperplane. A different
step size would lead to a different w, but the convergence properties of the algorithm would not change.
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Figure 4.3: Examples of linear discriminants who would classify the training data correctly. Some would
perform much better than others on future data, but the perceptron criterion cannot distinguish between
them.

• A single perceptron can only handle linearly separable data. Thanks to the non-linear step function,
however, multiple layers of perceptrons would be capable of handling non-linearly separable problems.
This insight was only acquired decades after the discovery of the perceptron. However, although layers
of perceptrons could handle complex problems, training would still be an enormous problem. Training
a single perceptron can already take ages, and may not find a very good solution. Combinations of
perceptrons would be exponentially harder.

In chapter 8, we shall see an extension of the original perceptron which address the above shortcomings:
artificial neural networks or multi-layer perceptrons (MLP).

4.2 Probabilistic modelling

Classification using some function of the inputs can be powerful and fast, both in training and in testing.
Nevertheless, it exhibits one major problem: it does not provide us with information about the certainty of
the classification.

Rather than looking for a function that separates different classes, we can instead look at how the data
of the different classes is distributed. Based on our knowledge of this distribution, we can then compute
the probability that a given datapoint should belong to one or the other class. The discriminant between
two classes then corresponds to the set of positions in dataspace where it is equally likely for a datapoint to
belong to those two classes. As we will see shortly, for some distributions, this discriminant is linear.

4.2.1 Generative models

When building a probabilistic model of a classification problem, we are interested in the joint probability of
the data examples X = x1:N and the corresponding class labels Z = z1:N , p(X,Z). A simple artificial 1D
example of such a joint distribution is shown in Figure 4.4. From this joint distribution, we can then derive
the quantity that we’re interested in: the probability of a certain class label given a data point, p(z|x). There
are two ways in which we can obtain this quantity, and these result in the two great families of probabilistic
models. We could factorise p(x, z) = p(x|z)p(z) and use Bayes’ rule to obtain

p(z|x) =
p(x|z) p(z)

p(x)
, where p(x) =

∑
z

p(x|z) p(z) . (4.9)
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Figure 4.4: Illustration of the joint probability of class labels and measurements. In this case, we have
multiple datapoints consisting of a single measurement and the corresponding class label. The class label is
indicated in the y axis, and is discrete (z ∈ {C1, . . . , C4}). The measurement is continuous.

Such models are called generative models. The other possibility is to learn a functional form for p(z|x)
directly. Such models are called discriminative models. As we will see, both types have their pros and cons.

Generative probabilistic models typically have the advantage that they are easier to train than discrim-
inative models. In general (and contrary to popular belief) they also require less data to obtain a good
representation of the joint likelihood distribution, and if the model is correct (i.e., if the functions chosen to
represent the distribution are indeed capable of representing the real distribution of the data,) using Bayes’
rule to select the most probable class results in the lowest possible error in the limit of infinitely many
classifications.

Let us consider the simple, 2-dimensional example of Figure 4.1 again. The input space has two dimen-
sions (the class label could be plotted as a third dimension, or be represented by the colour or shape of the
point, as in this case.) To construct a generative model, we start by learning what the probability is that
a data point should belong to a certain class, if we don’t know the actual value of the parameter. If class
C1 occured much more often than class C2, we would know that the probability that a datapoint belongs to
C1 would be higher, a priori, compared to C2. This probability is, therefore, called the prior probability. In
this case, there are exactly 100 examples of each class, and if this were the only information that we had,
we would assume that p(z = C1) = p(z = C2) = 1

2 . In some cases, we would know that the dataset is not
reflecting the real prior distributions accurately, and we would encode other prior beliefs in the chosen values
for the prior probabilities.

The next quantity to consider is the likelihood, p(x|z). We need to find some way to represent the
distribution of the data in each class: in this case, a 2D Gaussian distribution seems to be a good choice.
The Gaussian distribution is important, because it has some nice mathematical properties, and it appears
to fit the distribution of many variables in the real world very well. For details on this distribution, refer to
Appendix B.

The multivariate Gaussian distribution has two parameters, the mean vector and the covariance matrix.
To learn the parameters of the distribution, we find the parameter values which maximise the likelihood.
Details on how to do this are found in section 7.1. The resulting distributions are shown as contours in
Figure 4.5, and the resulting discriminant is shown as a red line in the same figure.

Linear discriminant The discriminant in a probabilistic classification model indicates where p(C1|x) =
p(C2|x). We could see in Figure 4.5 that when Gaussian distributions are used to describe the class-conditional
distribution of the data, the resulting discriminant is non-linear. In fact, it is a quadratic function of the
input, a fact that is hard to see graphically but easy to derive mathematically, as follows.

The Gaussian distribution is given by:

p(x|z = Ck) =
1

(2π)d/2|Σk|1/2
exp− 1

2 (x− µk)>Σ−1
k (x− µk) , (4.10)
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Figure 4.5: Fitting of Gaussian distributions to the example data.
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Figure 4.6: Fitting of Gaussian distributions to the example data, while constraining the covariances to be
identical.
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which is scary the first time you encounter it, but is actually pretty easy to work with. We want to find
the function where p(Cj |x) = p(Ck|x). To make our life simpler, we will actually look for the function where
log p(Ck|x) = log p(Cl|x) (which is equivalent, because the logarithm is a monotonically increasing function).
The logarithm of the Gaussian distribution is given by:

log p(x|Ck) = −d
2

log(2π)− 1

2
log |Σk| − 1

2 (x− µk)>Σ−1
k (x− µk) , (4.11)

and if we set the log-probabilities of two classes equal to each other, log p(Cj |x) = log p(Ck|x) we obtain,
after simplification

log p(Cj)− log |Σj | − (x− µj)>Σ−1
k (x− µj) = log p(Ck)− log |Σk| − (x− µk)>Σ−1

k (x− µk) (4.12)

or

log p(Cj)− log |Σj | − x>Σ−1
j x + 2x>Σ−1

j µj − µ>Σ−1
j µj

= log p(Ck)− log |Σk| − x>Σ−1
k x + 2x>Σ−1

k µj − µ>Σ−1
k µj (4.13)

The only terms in Eq. (4.13) which are a function of x are x>Σ−1x, which is quadratic in x, and xΣ−1µ,
which is linear in x. The other terms are constant. As a consequence, the discriminant function is generally
quadratic in x, and will only be linear when the quadratic terms cancel out, i.e., when x>Σ−1

j x = x>Σ−1
k x.

This is the case when Σ−1
j = Σ−1

k . Notice that the linear terms do not cancel out when the covariances are
identical, as long as the means are different. If we constrain the covariances to be identical when learning
the distributions, we obtain the classifier depicted in Figure 4.6. This latter model is important for two
reasons: historically, because it is formally equivalent with Fisher’s discriminant, which is widely used, and
practically, because constraining the model to be less flexible makes it less likely to overfit. When learning
models by maximum likelihood, overfitting is a permanent concern, and constraining the covariance matrix
of Gaussian distributions is often beneficial in practice. It reduces the number of free parameters which,
otherwise, would be quadratic in the number of dimensions of the data: when few datapoints are available,
or when the data is high-dimensional, different constraints can be applied to the covariance matrix.

4.2.2 Discriminative models

Where the generative models described the complete joint distribution of the data and the labels, (x, z),
the quantity that we are really interested in, at the end of the day, is p(z|x). Instead of learning the whole
joint distribution, we could focus instead on learning p(z|x) directly. If our model is correct, the two are
equivalent, and the discriminative model cannot outperform the generative model. If the model is incorrect,
however, the discriminative model can outperform the generative model. In order to do so, however, it needs
sufficient data [Ng and Jordan, 2002].

An example of such a model is logistic regression. It assumes the following functional form for the
posterior distribution:

p(z|x) = σ(wx) (4.14)

=
1

1 + e−wx
, (4.15)

1

(a) (b)

Figure 4.7: Figure (a): plot of σ(x), where x is a scalar. Figure (b): plot of σ(x1 + x2/2), where x is a
two-dimensional vector.

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


46 Linear discriminants

where, as usual, we extend x with x0 = 1 so that we consider the bias term w0 to be part of the vector w
for notational convenience. Figure 4.7 shows what this function might look like in one and two dimensions.

Since the posterior probability is given by a linear function of the input space, the discriminant (where
p(z|x) = 0.5) will be a linear function of x. The parameter vector w defines where that discriminant lies
and how steeply the posterior probability transitions from one class to the other, but the functional form of
the discriminant is fixed by the functional form of the posterior probability function.

And this is where we can gain some insight as to why discriminative models can perform better than
generative models when the modelling assumptions have been violated: we saw in the previous section that
a generative model where the likelihood is given by Gaussian PDF will result in a linear discriminant if
the covariance matrices are constrained to be the same for all classes. This may not be a valid constraint
in practice, and enforcing it can result in a sub-optimal approximation of the posterior probability. Yet
Gaussian PDFs with identical covariances are not the only PDFs that result in a linear discriminant. If
our data had such a non-Gaussian distribution with a linear discriminant between the classes, then fitting
Gaussian distributions to it, and constraining the covariances of these Gaussians to be identical (in order
to ensure that the discriminant be linear) will indeed result in a linear discriminant, but a wrong linear
discriminant, even though the correct discriminant is nevertheless also linear. Logistic regression, if trained
on sufficient data, will find that correct discriminant, and, in general, may approximate the correct posterior
probability more closely than a generative model would — even if its modelling assumptions also violate the
true data distribution.

At the same time, estimating the parameters for the Gaussian distribution of each class requires few
parameters, especially if the covariance matrix is shared. Finding the parameters of the logistic function
requires more data, which illustrates how the advantage of discriminative models only becomes apparent
when sufficient data is available.

Also notice that the parameters of the Generative models can be learned in closed form. By contrast, the
parameter vector of logistic regression can only be optimised using numerical techniques such as gradient
descent or improved variations thereof. In general, discriminative models are harder to train than generative
models.

Finally, by definition, generative models model the distribution of the data. This has the advantage that
they can deal with missing data, something which discriminative models cannot do. Being able to deal with
missing data can be a huge advantage in practice, where, for example, it is often the case that the class labels
are not known for all elements in the dataset. In such cases (called semi-supervised problems), generative
models can use all the data, while discriminative models can only use the labelled examples.

4.3 Fisher’s Linear Discriminant

One last linear discriminant that’s worth mentioning, if mostly for historical reasons, is called Fisher’s linear
discriminant. It is based on the insight that building a linear hyperplane that separates two classes is
equivalent to first projecting the whole dataset down (linearly) onto a single dimension, and then choosing
the point in that one dimension that separates the two classes best. If we do such a projection, then the
intuition behind Fisher’s linear discriminant is that for good class separation, we want the means of the
projected data to be far apart. However having the means far apart is not sufficient for good classification,
if the variances of the projected classes are large enough to create overlap between the classes. The idea is
then to find the linear projection that makes the distance between the projected means as large as possible,
while at the same time keeping the variance of each projected class as small as possible.

Figure 4.8 illustrates the projection using Fisher’s linear discriminant.

4.4 Non-linear Basis Functions

Linear discriminants are nice to work with because they are simple to implement, easy to train and simple
enough not to be prone to overfitting. At the same time, of course, they are too simple for many problems:
in many real-world classification problems the classes are not linearly separable. We will see more advanced
classification techniques later, but before we get there, we should mention a simple yet very powerful trick
that can be used to make non-linearly separable classes linearly separable.
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Figure 4.8: Illustration of Fisher’s linear discriminant. The projection that maximises the distance between
the means is given in blue; the projection that simultaneously minimises the within-class variance is given
in green.
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Figure 4.9: Transforming data with fixed, non-linear basis functions resulting in a space where the classes
are linearly separable. In this example, x1 has been replaced by the Euclidean distance from c1, while x2

has been replaced with the Euclidean distance from c2. The points in both plots are shaded according to
their distance from c1 and c2: points are shaded red according to their proximity to c1 and blue according
to their proximity to c2.
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The idea is that the data may not be separable in the observation space, but that it may be possible to
make a fixed mapping from this space to another space where the datapoints would be linearly separable.
The functions that operate this change of basis, called basis functions, must necessarily be non-linear for
a non-linearly separable problem to become linearly separable. Figure 4.9 illustrates such a problem. The
original data is not linearly separable, but the transformed data is. Of course, the difficulty is now that we
need to find out how to transform the data in order to obtain linearly separable data.

Learning the non-linear basis functions from data is similar to training a non-linear classifier, and we
will see in the future that some non-linear classifiers, most notably the Multi-Layer Perceptron, can be
decomposed into a linear classifier and learnt non-linear basis functions. Such classifiers are sometimes
called adaptive basis functions for that very reason.

4.4.1 Basis functions for regression

Although basis functions can be an important part of classification, they are even more important in the
case of regression. Consider, for example, the problem of the polynomial curve fitting example used in
section 3.2. Here, we found the weights for a weighted sum, so that this weighted sum approximates the
target measurements as closely as possible for each input measurement. This sum consisted of fixed, nonlinear
transformations of the input measurements: in other words, each polynomial function is a nonlinear basis
function of the input variables, and we sought for a linear combination of these basis functions to approximate
the target variable. We shall return to the use of basis functions at greater length when discussing kernel
methods.
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Chapter 5

Bayesian Decision Theory

5.1 Classification

As we have seen in the previous chapter, using the joint probability distribution of all the variables in the
system allows us to answer any questions about the system. Describing this joint probability is often difficult,
and some thought must be given to how this is done. In this chapter, we will see how the joint probability
distribution can be represented, how it can be learnt from examples, how it can be used to answer questions
about variables in the system, and how much information one variable can give about another variable.

5.2 Optimal decisions

In section 4.2, we have seen a first example of how the joint probability of the observed variables x and
the corresponding desired target variables t, p(x, t), provides us with all the information we need about
what targets to expect for a given input. It also allows us to quantify the uncertainty associated with a
prediction t̂. The next few sections will investigate in more detail how we can learn this joint distribution,
but at the end of the day we will need to make decisions based on this quantity. For example, imagine that
you should know the probability of whether it shall rain today or not, based on a number of measurements
(such as temperature, whether it rained during the night, the presence of clouds, etc.) contained in a vector
x. This knowledge is useful in order to decide whether to take an umbrella when leaving your den: taking
your brolly1 (or not) is a deterministic decision, and for either choice you can compute the probability that
it should be the wrong choice (i.e., taking the umbrella and not using it, or leaving the umbrella and be
soaked).

We would like our decision to be optimal in some way. For example, we could choose to minimise the
number of wrong decisions. In that case, it would seem intuitive to predict the outcome with the highest
posterior probability; in our example, that would mean predicting rain if the posterior probability of rain is
higher than the posterior probability of no rain. To show that this intuition is indeed correct, we compute
the probability of making a mistake, and minimise that. The probability of a mistake, p(mistake) is given
by p(C1, Ĉ2) + p(C2, Ĉ1), the probability of predicting class two when the datapoint belongs to class one, plus
the probability of predicting class one when the datapoint belongs to class two. In our example, we could
have C1 indicating that it will rain today, Ĉ1 indicating our decision to take the umbrella (i.e., us deciding
that it will indeed rain today), C2 that it will not rain today and Ĉ2 the decision not to take our umbrella.
We simply apply the familiar rules of probability to compute these quantities:

p(C1, Ĉ2) =

∫ ∞
−∞

p(C1,x, Ĉ2)dx p(C2, Ĉ1) =

∫ ∞
−∞

p(C2,x, Ĉ1)dx (5.1)

and

p(C1,x, Ĉ2) = p(Ĉ2|x, C1) p(x, C1) p(C2,x, Ĉ1) = p(Ĉ1|x, C2) p(x, C2) (5.2)

1“Noo!”, yells the proofreader, “You can’t do that; only people from the UK would know that brolly means umbrella”. Well,
not anymore.
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Figure 5.1: Plot of the joint probabilities of the classes C1 and C2, and the observations. Note that p(C,x) =
p(x|C) p(C), and that the area under the sum of the two curves equals one. The decision threshold x̂ indicates
how points are classified: points belonging to R1 (i.e., x < x̂) are classified as C1, while points belonging
to R2 (x > x̂) are classified as C2. The green area indicates the amount of misclassified points from class
C2 for which the same amount of correctly classified points from class C1 exist. The blue area indicates the
converse: the amount of misclassified points from class C1 for which the same amount of correctly classified
points from class C2 exist. Both areas are fixed contributions to the error, because the correct classifications
and erroneous classifications cancel each other out in those areas. The red area indicates the additional
misclassifications, from either class. This area is zero when the joint probabilities are equal and, therefore,
when the conditional probabilities p(Ck|x) are equal for all k (indicated by x0 in the plot). Note that although
this plot was made for univariate observations (hence the use of scalar x rather than vector x), the reasoning
holds for both univariate and multivariate observations.
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The decision of predicting one class or the other depends only on the input x and is deterministic, so that
the probability of predicting Ĉ1 is either zero or one, depending on the value of x. This is illustrated in
Figure 5.1, where we predict Ĉ1 if x falls in region R1, and Ĉ2 if x falls in R2: the probability of

p(Ĉ2|x, C1) = p(Ĉ2|x) =

{
0 if x ∈ R1

1 if x ∈ R2

(5.3)

and similarly for the decision of Ĉ1. From these, we get that

p(mistake) =

∫
R1

p(x, C2)dx+

∫
R2

p(x, C1)dx (5.4)

Because the union of the decision regions must span our whole input space, we can only minimise p(mistake)
by choosing the decision boundary such that p(x, C2) < p(x, C1) in R1 and vice versa in R2. From the
product rule of probabilities, we have that p(Ck,x) = p(Ck|x) p(x). Since p(x) is common to all classes,
it does not affect the decision boundary and the decision rule that minimises the probability of making a
mistake is found by assigning each datapoint to the class with the largest posterior probability p(Ck|x).

5.3 Loss minimisation

Sometimes we do not simply want to minimise the number of mistakes, but rather to minimise the impact of
these mistakes. Since some mistakes may be worse than others, it can be beneficial to increase the number of
benign mistakes if that results in a reduced number of ‘bad’ mistakes. A typical example of such a situation
is in the medical domain, where the misclassification of a diseased patient as healthy can have far worse
consequences than the misclassification of a healthy patient as diseased.

In such cases, we can capture this discrepancy in a cost function or loss function where different types of
mistake get different weights: instead of minimising the error, we minimise the expectation of the loss. This
expectation of the loss (or expected loss) is the average value of the loss that we would converge to if we
kept classifying datapoints forever. By minimising the expected loss, we ensure that we minimise the loss
over a (sufficiently large) number of examples. This is the best we can do.

In the above example, the cost function might be given by the following matrix:

L =

[
0 1000
1 0

]
, (5.5)

where a correct classification carries no penalty, the misclassification of a healthy individual as cancerous
carries a penalty of one, and the misclassification of a cancerous patient as healthy carries a penalty of one
thousand. Following the same reasoning as in section 5.2, we can compute the expectation as

E[L] =
∑
k

∑
j

∫ ∞
−∞

Lkj p(Ĉj , Ck,x)dx (5.6)

=
∑
k

∑
j

∫
Rj

Lkj p(Ck,x)dx (5.7)

=
∑
j

∫
Rj

∑
k

Lkj p(Ck,x)dx (5.8)

which implies that we should choose our regions Rj so as to minimise
∑
k Lkjp(Ck,x). Since we can simplify

out p(x) as in section 5.2, we obtain that the optimal decisions (the decisions which result in minimal loss
over many experiments) is obtained by choosing the class Ĉj for each datapoint x as

Ĉj = arg min
j

∑
k

Lkj p(Ck|x) (5.9)

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


52 Bayesian Decision Theory

(a) (b)

(c) (d)

Figure 5.2: Illustration of the probability of PDF parameters given the data. the probability of the distri-
bution is reflected in the shade of the plot: lighter for less probable distributions, and more intense for more
probable distributions. The left plots (a and c) show the PDF for varying values of the mean µ, the right
plots (b and d) show varying values of σ2. The data consists of 5 normally distributed values for the top
plots and 30 values for the bottom plots.

5.4 Estimating the distribution

The above computations assume that we know the distribution of the data. In reality, of course, this
distribution is unknown and we need to estimate it from data. We can estimate the PDF that describes the
distribution in three important ways:

1. by maximum-likelihood. In this case we simply choose the parameter values that maximise the prob-
ability of the data given those parameters, p(XXX|θ).

2. by maximum a posteriori. Here, we explicitly state what our prior beliefs are about the parameter
values and maximise the a posteriori probability of the parameters, p(θ|XXX).

3. by Bayesian inference. Instead of finding the most likely distribution for our data, we acknowledge that
the precise distribution is unknown. The distribution of the data is itself a random variable, which we
can assign a probability to.

In the following, we shall mostly focus on maximum-likelihood (ML) techniques and Maximum a Pos-
teriori(MAP) learning because, in general, these can be solved in closed form and are easy to work with.
Moreover, if the amount of available training data is sufficiently large, the difference (in performance, but
typically not in computational cost) between ML and fully Bayesian approaches becomes negligible. In prac-
tice, they are therefore quite frequently used. Bayesian techniques show their tremendous strength when
the amount of available training data is small. Except for very specific models such as, for example, Gaus-
sian Processes (Chapter being written), exact computations become intractable in full Bayesian models and
approximations are then necessary: these will be treated in chapter 11.

But before we have a more detailed look at ML and MAP models, it is important to realise how they fit
in the big picture. So this section tries to convey an intuitive understanding of Bayesian modelling.

5.4.1 Estimating a Gaussian PDF: Bayesian approach

Let us consider a simple example. We sampled some data, XXX, from a Gaussian distribution (with zero mean
and unit variance), as depicted in Figure 5.2. Based on this data, we would like to estimate the probability

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


5.5 Parametric Generative Models 53

density at a new datapoint x∗. If we knew the distribution of the data, this would be easy: we could simply
evaluate the PDF at x∗. Unfortunately, we do not know the value of the parameters of that PDF.2 If we
consistently apply the rules of probability, we can estimate our desired quantity, p(x∗|XXX), as follows:

p(x∗|XXX) =

∫∫
p(x∗|µ, σ2) p(µ, σ2|XXX)dµdσ2 (5.10)

Since we assume that the data has a Gaussian distribution, we can compute the probability of the data
for any set of parameter values (µ, σ2). From this, we can compute the probability of the parameter values
given the data using Bayes’ rule. We need to explicitly assume some prior over the parameter values, but
let us assume that we don’t know anything and choose a uniform distribution for those.3

The result is illustrated in Figure 5.3. Here, we compute the posterior probability of different value pairs
for the parameters of the Gaussian PDF, and plot this as a colour map, for different amounts of training
data. As the amount of training data is increased, the posterior distribution becomes more peaked around
the ML estimator (red dot), and in the limit of infinitely many training examples, the ML estimator coincides
with the ground truth while the complete probability mass is assigned to that ML estimator: the probability
density at all other parameter values goes to zero.

Notice how Bayesian inference is, of course, not magically solving the problem of not having enough data
to estimate our distribution. The sample mean of the data is, in the absence of informative prior knowledge,
the most likely mean of the distribution and also the mode of our inferred distribution. But at least the
ground truth distribution is given non-zero probability and, more importantly, datapoints that are further
away from the mean are not assigned absurdly small probability. Informally, regions of the space which are
given a low probability are only assigned a low probability when sufficiently data has been seen in regions
of high probability to be confident in knowing what the low probability regions are.

5.5 Parametric Generative Models

In generative models, we find a function that describes the joint distribution of the observations and the
quantities we are interested in. As a very simple and slightly artificial example, let us consider that we are
playing the following game. I have two coins, one coin which is fair and will land with heads (X = 1) and tails
(X = 0) with equal probability and another coin which will land with heads with probability p(X = 1) = 0.6.
You do not know a priori which coin I am using, I could be using either with equal probability.

5.6 Example

You are a foreign student, newly arrived in Amsterdam. You don’t really know what weather to expect,
because you’ve got a few Spanish friends who told you that, basically, it’s precisely what hell would be like
if the devil had been sadistic enough to use water instead of fire, and you’ve got a few Scottish friends who
told you the weather in Amsterdam is bloody fantastic. Now you wonder whether to bring your umbrella
when coming to class. Doing so is great when it rains, but is a pain when the weather’s dry, because your
umbrella is one of these old-fashioned types that aren’t extensible. They’re great when you get caught up
in a sword fight, but you figure you don’t have to fear those that much. Not anymore. . . Well, not here, at
least.

It did not rain when you stepped off of the plane, and in the first ten days of your stay in Amsterdam
the weather was as follows: {¬r, r,¬r,¬r, r,¬r,¬r, r, r, r}, meaning that it didn’t rain the first day, it rained
the second day, etc. What is your optimal strategy on each of those days?

First, we need to decide how we weight the different inconveniences. Let us encode the problem with the
following loss function:

L(X,R) =

[
0 1
3 0

]
(5.11)

2Let us for now assume that the data has a Gaussian distribution; the only unknowns are the parameters of this distribution.
3This is not formally correct, as our parameters can take any value in [−∞,∞] and our uniform PDF is therefore not

properly normalised. Such a prior is called an improper prior, and must be handled with care: one must make sure that the
posterior is normalised. In this particular case the posterior is indeed normalised.
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Figure 5.3: Illustration of the posterior probability of parameters µ and σ2 for a gaussian distribution, with
different amounts of training data. The left hand side shows the probability of (µ, σ) pairs given the training
data. In these plots, the ML estimator is indicated with a red dot, while the ground truth is indicated with a
green dot. On the right hand side, the data is shown as dots in the X axis, the ground truth data distribution
is plotted in green, the ML PDF is indicated in dashed red and the PDF obtained by Bayesian inference is
shown in blue.
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If it rains and you don’t carry your umbrella, you consider that three times more annoying than if it’s dry and
you have you’re carrying umbrella for nothing. Should you carry your umbrella? We shall solve this problem
in three ways, using maximum likelihood, using maximum a posteriori and using the Bayesian approach.

5.6.1 Expected loss

We want to minimise the expectation of loss, which is given by:

E[L(x, r)] =

[
L(x, r)p(r) + L(x,¬r)p(¬r)

L(¬x, r)p(r) + L(¬x,¬r)p(¬r)

]
(5.12)

=

[
p(¬r)
3 p(r)

]
(5.13)

In other words, we expect a loss of p(¬r) if we carry our umbrella, and a loss if 3 p(r) if we don’t. So now
the question is: what is the probability that it will rain today. We encode this probability with a Bernoulli
distribution, which takes a single parameter, µ:

p(r) = µr(1− µ)1−r , (5.14)

so that the question now is: how do we estimate µ?

5.6.2 Maximum likelihood

We assume that every day is another day, and that whether it rains or not is independent of whether it
rained yesterday. The likelihood function `(µ) is then given by

p(x1, . . . , xn) =

n∏
i=1

Bern(xi;µ) (5.15)

= µNr (1− µ)N¬r , (5.16)

where Nr indicates the number of rainy days in the training set, and analogously for N¬r. The maximum-
likelihood (ML) approach is to find the value of µ that maximises this likelihood function. It can easily be
shown4 that the ML solution for µ is given by

µ =
Nr

Nr +N¬r
(5.17)

On our first day, you have had a single experience, which was that it did not rain when you stepped off
the plane. Your estimate for µ is therefore zero, and your expected loss if you take your umbrella (= 1) far
outweighs your expected loss if you don’t take it (= 0). This is obviously overfitting the data, and as time
goes on our estimate fluctuates quite a lot (see Table 5.1). After sufficient data will have been seen (and
assuming that the distribution does not change in the meantime),5 we do eventually converge to the correct
solution.

5.6.3 Maximum a posteriori

So, of course it’s a bit unrealistic to rely only on our observations. After all, we had a lot of information
about the weather in Amsterdam before stepping off that plane: information about its location on the globe,
online information, friends’ witness reports, etc. Let us say that, based on this knowledge, we believe that
the probability that it should be dry every single day is zero: p(µ = 0) = 0, that the probability that it
should rain every day is zero as well (p(µ = 1) = 0), and further that we believe it’s more likely to rain than

4This is a common exam question. Do try to show it.
5It does actually change, of course, because the seasons change, but let’s assume that for the sake of this experiment we

have made the axis of rotation of the earth orthogonal to the earth’s plane of rotation around the sun. We’ll put things back
as they were when we’re done, not to upset anyone.
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day rain µ E[L]
1 dry 0/1 = 0 (1, 0)>

2 rain 1/2 = 0.5 (0.5, 1)>

3 dry 1/3 = 0.33 (0.67, 0.67)>

4 dry 1/4 = 0.25 (0.75, 0.50)>

5 rain 2/5 = 0.40 (0.60, 0.80)>

6 dry 2/6 = 0.33 (0.67, 0.67)>

7 dry 2/7 = 0.29 (0.71, 0.57)>

8 rain 3/8 = 0.38 (0.63, 0.75)>

9 rain 4/9 = 0.44 (0.56, 0.89)>

10 rain 5/10 = 0.5 (0.50, 1)>

Table 5.1: Evolution of your estimate of µ and the expected loss as the days go by, using Maximum-Likelihood
estimation.

Beta distribution, a = 3, b = 2

0 0.5 1
0

1

2

3

Figure 5.4: Prior over the value of µ
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not. Such a prior over our parameter can be represented by a Beta distribution, for example the distribution
shown in Figure 5.4, which has parameters a = 3 and b = 2. As we shall see below, this is equivalent with
pretending that we have seen three rainy days and two dry days before we step out of the plane.

After our first observation (r = 0), we can compute the likelihood of that observation. This is given by
the Bernoulli distribution, so that we can compute the posterior probability of the parameters as:

p(µ|X) =
p(X|µ) p(µ)

p(X)
(5.18)

In this, p(X) is constant with respect to µ. Therefore, if we want to maximise p(µ|X), p(X) is irrelevant and
we can simply maximise p(X|µ) p(µ). If we wanted to compute it, it would simply be given by the partition
function of the Beta distribution (see section B.2). The maximised function is given by

p(X|µ) p(µ) ∝ µNr (1− µ)N¬rµa−1(1− µ)b−1 (5.19)

= µNr+a−1(1− µ)N¬r+b−1 (5.20)

which we can maximise using the usual trick of computing the logarithm and maximising that. The result
is then:

∂

∂µ
(Nr + a− 1) logµ+ (N¬r + b− 1) log(1− µ) = 0 (5.21)

Nr + a− 1

µ
− N¬r + b− 1

1− µ = 0 (5.22)

(Nr + a− 1)(1− µ)− (N¬r + b− 1)µ = 0 (5.23)

Nr + a− 1− (Nr + a+N¬r + b− 2)µ = 0 (5.24)

µ =
Nr + a− 1

Nr + a+N¬r + b− 2
(5.25)

This result is illustrative of the more general facts that:

1. if you parametrise the prior over the parameters of a distribution with a conjugate prior, the MAP
solution for the parameter values is equivalent with the ML solution on the training data with an
additional constant amount of “virtual” data

2. the same result can trivially be obtained by Laplace smoothing. MAP learning is therefore rarely
performed exactly: it does not provide anything more than Laplace smoothing does, and it is a little
bit more complex to derive. MAP does, on the other hand, give us a nice explanation for why Laplace
smoothing is a valuable heuristic to use.

5.7 The Bayesian approach

In the Bayesian approach, we consistently apply the rules of probability and bring them to their logical
conclusion. The parameters of the distribution of the data are unknown, they cannot be determined exactly
so, therefore, they should be treated like the random variables that they are. Bayes’ theorem allows us to
compute the probability of the values, and when we compute anything that involves the probability of the
data, we just integrate out every variable that we are not interested in — including the model parameters.

Similarly to the MAP approach, we now need to specify explicitly what our prior beliefs are, which we
encode in our prior distribution over our parameter values. As time goes by, we update our beliefs about
the distribution’s parameter values, as illustrated in Figure 5.5. Notice how the added information results
in a more peaked distribution, reflecting our increased confidence in the estimate. In the limit for infinite
amounts of data, we converge to the same value as the ML estimator, which then gets a probability of one.
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Figure 5.5: Evolution of the posterior probability distribution over the parameter µ of our Bernouli distri-
bution, as we observe the weather on more days: before we see any data, we have a prior distribution over
our parameter, which is informative but very broad. This reflects both our knowledge and our uncertainty.
As time goes by, we observe more data, and we become more certain about the parameter values of our
Bernouli PDF.
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To compute our expected loss, we now need to marginalise out the variables that we are not interested
in. In this case, we get that if we integrate out the parameter µ of the PDF,

p(x|XXX) =

∫ ∞
−∞

p(x|µ) p(µ|XXX)dµ (5.26)

=

∫ ∞
−∞

µx (1− µ)1−x Beta(µ; a, b)dµ (5.27)

(5.28)

which is the expectation of µ if x = 1 and one minus that expectation, if x = 0. The solution to this integral
is therefore known, namely as the mean of the Beta distribution,

p(x|XXX) = µx (1− µ)1−x where µ =
a

a+ b
(5.29)

Notice that despite the similarities, this result is different from the MAP solution, even for this very
simple example. The ML solution sways most extremely with the data as more data are observed, the MAP
solution avoids the most extreme parameter estimates by including our prior knowledge, but we can observe
how the resulting estimate is always slightly more extreme than the value obtained by Bayesian inference.

This distribution is about the least complex that we can devise, since the possible values of the observa-
tions are so limited in their possible values. The difference between the different approaches is therefore also
necessarily limited. Yet even in this simple case, using the Bayesian approach is guaranteed to outperform
the other approaches in expectation: as the number of different datasets we observe approaches infinity, the
probability approaches one, that the Bayesian approach outperforms the other approaches.

5.8 Information Theory

We introduce information theory quite informally. We want a measure for the “amount of information”
obtained when observing an event. We consider that the amount of information obtained when observing
the event depends on how likely we considered that event to be: for example, if the value to be observed was
known beforehand, the amount of obtained information is zero.

If we observe two events, and these two events do not give information about each other (ie, they are
independent), then the amount of information obtained from observing both should be equal to the sum
of the information obtained by observing either of the events. We denote our measure of information as
h(x), so that from this last requirement, we obtain that if p(x, y) = p(x) p(y), then h(x, y) = h(x) + h(y).
From this, we can derive that h(x) must be proportional to the logarithm (with some arbitrary base b) of
p(x): h(x) ∝ ln p(x). We can choose the proportionality constant as we see fit, but since we consider that
observing improbable events gives us positive amounts of information (and that certain events give us zero
information), this constant must be negative. The value of the constant changes the base of the logarithm,
and in effect the unit in which we express the information: if we use the base-2 logarithm, we express our
amount of information in ’bits’, if we use the natural logarithm, we express our amount of information in
’nats’. The function for the amount of information obtained when observing x is given by:

h(x) = − ln p(x) (5.30)

in nats, or h(x) = − log2 p(x) in bits.
If we now consider how much information a random event provides us with on average or, equivalently,

how much information we need on average to transmit the real value of the variable, we compute the expected
information of that variable as:

H[x] = −
∑
x

p(x) ln p(x) (5.31)

This quantity is called the entropy of the variable x. For a binary variable, the entropy is plotted as a
function of p(x) in Figure 5.7. For a discrete variable with three states, it is plotted as a function of p(x1)
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Figure 5.6: Animation of the evolution of the posterior distribution over the Bernouli parameter µ
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Figure 5.7: Plot of entropy for a binary random variable. The function is then H[x] = −∑i p(xi) ln p(xi) =
−p(x) ln p(x)− (1− p(x)) ln(1− p(x))

and p(x2) in Figure 5.8. It is clear from the graph that the entropy is maximal when all states have the
same probability. Intuitively, this is easy to understand: the expected amount of information is maximal
when none of the states is more likely to be observed than the others. Formally, we can easily prove that
this must be the case by maximising the entropy, using a Lagrange multiplier to constrain the probabilities
to sum to one.

If we have two groups of variables, x and y, then knowing something of the one may tell us something
about the other (it will, if the variables are not independent). The conditional entropy tells us what the
expected amount additional information is to specify one when we know the other:

H[y|x] = Ep(x)[Ep(y|x)[− ln p(y|x)]] (5.32)

= −
∫∫

p(y|x) ln p(y|x)dyp(x)dx (5.33)

= −
∫∫

p(x,y) ln p(y|x)dydx (5.34)

From the entropy of the joint variables H[x,y], we get that

H[x,y] = −
∫∫

p(x,y) ln p(x,y)dydx (5.35)

= −
∫∫

p(x,y) [ln p(x) + ln p(y|x)] dydx (5.36)

= −
∫∫

p(x,y) ln p(x)dydx−
∫∫

p(x,y) ln p(y|x)dydx , or (5.37)

= H[x] + H[y|x] (5.38)

where H[x] follows from the marginalisation of p(x) =
∫
p(x,y)dy.

5.8.1 Kullback-Leibler (KL) divergence

The conditional entropy relates the information content of two variables under their real probability dis-
tributions. In practice, however, these are never known. It is, therefore, important to be able to quantify
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Figure 5.8: Plot of the entropy for a discrete random variable with three states. Both plots show the
entropy (in 3 dimensions and as a colour gradient) as a function of p(X = x1) and p(X = x2), while
p(X = x3) = 1 − (p(x1) + p(x2)). The resulting input space is a triangle, where each edge corresponds
to one of the variables having probability zero (The axis labelled with p(x1) corresponds to p(x2) = 0 and
p(x3) = 1− p(x1), the diagonal edge corresponds to p(x3) = 0. The ragged edge in the plot on the left hand
side is an artefact of the plotting, not of the function itself.
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the amount of information wasted on when using some other probability distribution instead, in order to
minimise this waste. Where the conditional entropy relates two variables under their joint distribution, the
relative entropy or KL divergence relates two distributions over a single set of variables. The conditional
entropy will therefore be used in practice to measure how much information one variable provides about an-
other (for example, how much information a feature provides about the class label we want to predict), while
the KL divergence will be used to evaluate how similar one distribution is to another. This KL divergence
will be particularly in chapter 7, when we learn distributions over variables which are not observed.

If we know the real distribution of a variable x, we can compute how much information will need to
transmit per measurement, on average, to specify the real value of the variable. If we don’t know this real
distribution, we cannot create an optimal coding scheme and we will, therefore, waste information when
transmitting the real values. The Kullback-Leibler divergence measures how much information we waste by
using a distribution q(x) rather than the true distribution p(x):

KL(p||q) = −
∫
p(x) ln q(x)dx− (−

∫
p(x) ln p(x)dx) (5.39)

= −
∫
p(x) ln

(
q(x)

p(x)

)
dx (5.40)

It is important to note that this quantity is always positive: it is impossible to have more information,
and therefore impossible to perform better at the task at hand (over a large number of measurements) than
by knowing the real distribution of the data. The non-negativity of the KL-divergence is easy to show using
Jensen’s inequality (see Appendix D): since − ln(x) is a convex function, we have that

KL(p||q) = −
∫
p(x) ln

(
q(x)

p(x)

)
dx (5.41)

6 − ln

∫
p(x)

[
q(x)

p(x)

]
dx = − ln

∫
q(x)dx = − ln 1 = 0 (5.42)

5.9 Mutual information

It is often useful to quantify how informative one random variable is of another. For example, it is useful to
know how informative a feature is of the class label. We can formalise this as follows: two random variables
x and y are completely non-informative of each other if they are independent, i.e. p(x,y) = p(x) p(y).
A measure of how informative they are of each other is therefore the divergence of the joint probability
distribution p(x,y) and the factorised distribution. This is called the mutual information between x and y:

I[x,y] = KL(p(x) p(y) || p(x,y)) (5.43)

which we can express in terms of entropy as follows:

= −
∫
p(x,y) ln

(
p(x) p(y)

p(x,y)

)
dxdy (5.44)

= −
∫
p(x,y) ln p(x)dxdy +

∫
p(x,y) ln p(x|y)dxdy (5.45)

= −
∫
p(x) ln xdx

∫
p(y|x)dy +

∫
p(x,y) ln p(x|y)dxdy (5.46)

= H[x]−H[x|y] (5.47)

Figure 5.9 illustrates how the conditional entropy and the mutual information evolve as a function of the
distributions of x and y, for two binary variables.
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Figure 5.9: Illustration of conditional entropy and mutual information for two binary variables.
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Chapter 6

Graphical Models

We have seen, when first treating probabilistic models, that we are interested in learning the joint probability
distribution of different variables, in order to predict the value of some variables (say, class labels) when
knowing the value of other variables (say, the observations.) In general, this distribution will become very
complex when many variables are present in the model, such as when we are dealing with high-dimensional
data (images, for example), or when we are dealing with data series. In such cases, it is important to analyse
what variables are (conditionally) independent, as this allows us to drastically simplify the joint probability
distribution.

Graphical models provide us with an intuitive depiction of the independence assumptions between the
different variables in the model, and give us automated algorithms to efficiently perform computations with
these variables. Graphical models have become very mainstream in machine learning, partially because many
previously existing models have been shown to be specific examples of graphical models, but also because
they have been instrumental in improving our insights in existing and novel techniques.

In this chapter, we introduce graphical models: we see how to interpret and build a graphical model,
what information we can extract from such a model and how we can use such a model and the associated
probability distributions to obtain information about unknown variables. Later, we will also see how we can
learn those associated probability distributions.

6.1 Bayesian Networks

Graphical models come in two flavours: directed and undirected graphical models. Bayesian Networks (BN)
are the directed type. In these graphs, nodes represent random variables and edges represent dependence
relations. In Bayesian networks, the directed edges are meant to represent causal relations,1 because doing

1Causality (the fact that one event causes another) is a fascinating concept that has subtle implications and is often avoided
in statistics handbooks (except to say that there is no causation, only correlation). In fact, causality can be investigated
statistically, but only if we can intervene in the system, not if we can only measure what is happening. For a fascinating read
on the subject, see Pearl [2000].

A

B

C

Figure 6.1: A simple graphical network
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A

B

C

D

N

Figure 6.2: A simple graphical network illustrating the use of plates and shaded nodes

so typically leads to more compact representations of the associated distributions.
Let us consider a simple example to expose the different elements that build a graph. In this scenario, we

consider the random variable A, which denotes whether you are Attending the MLPR lecture on graphical
models or not. You are a student in Amsterdam, which means that you do all your displacements by bike:
if your bike is Broken, denoted by B, you need to find alternative means of transportation, which means
that you may not make it to the lecture. The probability of A therefore depends on B. However, whether
you attend this early-morning lecture also depends on what you Consumed last night, denoted C, and this
depends on whether you had the opportunity to go to your favourite coffee shop, so that C also depends on
the state of your bike B. The graphical model corresponding to this scenario is depicted in Figure 6.1, and
this graph indicates the factorisation of our probability distribution:

p(A,B,C) = p(A|B,C) p(C|B) p(B) (6.1)

Notice that, in this case, the factorisation does not imply any independence among the variables: we could
have obtained this very same factorisation by simply applying the product rule of probabilities to the joint
probability distribution. We could also have chosen a different factorisation (say, p(C|A,B) p(B|A)P (A))
and this would have represented the same joint distribution. And here I would like to highlight two points:

1. The causality implied by the arrows does not modify the distribution of the variables, and making
erroneous assumptions on the direction of the edges does not modify the joint distribution. It may,
however, affect the complexity of the resulting conditional distributions (causal relations tend lead to
much simpler distributions than their inverse) and, therefore, the affect the amounts of training data
required to learn them.

2. The fact that we model p(C|B) rather than p(B|C) does not mean that B is independent of C. Indeed,
if a broken bike makes it less likely that you’ll go to the coffee shop, knowing that you went to the
coffee shop will tell me that it’s less likely that your bike is broken.

Observed variables are denoted by shaded nodes. In this case, let us imagine that I can tell whether
you’re present for the lecture, so that node A is shaded. Furthermore, let us assume that you could have
consumed more than one thing, last night, and that, for the sake of the example, consuming one product
does not affect whether you consume another. Then, instead of encoding a variable C which can take on
any of a number of values c1, . . . , cn corresponding to a number of substances, we would have to use multiple
variables C1, . . . , Cn which can each take the value 0 or 1, denoting whether or not you consumed that
particular substance. Such repeated variables can be represented compactly with plates, as depicted in
Figure 6.2. If we now make the additional assumption that you are very dedicated, so that the state of your
bike does not in any way affect your capacity to find a coffee shop (it still does affect your capacity to come
to the lecture, though), and further assume that whether you succeed for this course and obtain your Degree
(D) depends on whether you attended this lecture (A), we obtain the graphical model shown in Figure 6.2.

This example is not fully connected anymore, and contains simplifying assumptions. For example, if I
know that you came to the lecture, I can compute the probability that you’ll get your degree. It doesn’t
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x1 x2 x3

x4 x5

Figure 6.3: Example Markov random field. Here, the probability of the set of variables, x, is given by
p(x) = 1

Zψ1(x1, x2)ψ2(x2, x3, x4)ψ3(x4, x5)

matter whether your bike is broken, or whether you consumed anything the evening before. A more subtle
point is the following: if I know that you didn’t come to the lecture, my belief that your bike is broken
will increase a little, and my belief that you consumed some substance that your liver had trouble with
also increases. The probability increases, for both B = true and Cn = true. However, if after the lecture
I learn for a fact that your bike is broken, my belief that you consumed anything last night will decrease
again (it will still be higher than if you had come to the lecture,2 but it will be lower than if I’d known that
your bike was in perfect working order, and lower than if I didn’t know about your bike either way.) In
other words, as long as A is unobserved, B and C are independent. This is called marginal independence.
If A is observed, however, then B and C become dependent, conditionally on A. The phenomenon where
two variables which are marginally independent become dependent when a common descendant becomes
observed is called “explaining away”: in this example, the fact that your bike is broken “explains away” your
inability to come to the lecture.

6.1.1 D-Separation

Finding the dependence and independence relationships between variables is, in general quite complicated.
The representation of the factorisation as a graph, however, provides us with a simple and powerful algorithm
for discovering these relationships automatically. D-separation states that two nodes are independent if all
paths connecting the nodes are blocked. A path is blocked, conditioned on the set of observed nodes if:

1. edges meet head-to-tail (−→©−→) or tail-to-tail (←−©−→) at a node which is in the observed set,

2. edges meet head-to-head (−→©←−) at a node which is not, and none of whose descendents is in the
observed set

If we apply this to the graph in figgraphmod2, we see that B and C are marginally independent, but
become conditionally dependent if either A or D is observed. similarly, B and D are marginally dependent,
but they become independent if A is observed.

6.2 Markov Random Fields

Markov Random Fields (MRF) are represented by undirected graphs. In such models, we do not assume
causal relations; instead the edges indicate marginal dependence between variables. The dependencies be-
tween variables are expressed in the form of potential functions: these are nonnegative functions of the
variables they are defined over, which do not (necessarily) have a probabilistic interpretation. The name
“potential function” stems from the origin of these models in physics. These functions are defined over
cliques in the graph. Cliques are defined as subsets of the nodes such that all pairs of nodes in the clique
have links between them. Maximal cliques are cliques of the graph such that no node could be added without
the subset ceasing to be a clique. Potential functions are defined over maximal cliques.

2Except in the extreme case that my prior was one to begin with. . .
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The probability of the state x of the network (i.e., a particular instantiation for all variables in the
network) is given by

p(x) =
1

Z

∏
C

ψC(xC) (6.2)

where Z is called the partition function,3 and is a scalar that ensures that the probability of all possible
states x sums up to one; xC is the set of nodes belonging to clique C and ψC is the potential function defined
over that clique. The partition function is computed by summing over all possible assignments to x:

Z =
∑
x

∏
C

ψC(xC) (6.3)

Computing Z is often not possible: the computational complexity grows exponentially (worst case) in the
number of nodes in the graph, although in some cases the graph structure, e.g. a chain or tree structure,
makes computing Z possible. In general, however, computing Z is not always necessary. The probability of
two states can be compared, and conditional probabilities can be computed, without computing Z.

6.2.1 Independence

Because the potential functions are undirected, the subtle difficulties stemming from explaining away do not
arise in MRF. Detecting whether two (sets of) nodes A and B are independent given C again simply boils
down to checking whether all path between the nodes from A and the nodes from B are blocked. A path is
blocked if any node on the path belongs to the set of observed variables.

6.3 Factor Graphs

As we have seen, both flavours of graphical models (directed and undirected) specify a factorisation of the
joint probability of the variables. Factor graphs are a third, more general type of graphical representation
that does not necessarily represent probability distributions. A factor graph is a graphical representation of
a function, consisting of edges, variable nodes and factor nodes. The variable nodes denote the value of the
variables of the function, a factor node represents any function of the variables it is connected to, and the
value of the function is the product of the factors in the graph. Factor graphs can, therefore, represent much
more than probability distributions and are not by themselves (probabilistic) graphical models although they
can, of course, represent any graphical model. Since any graphical model, both directed and undirected, can
be represented as a factor graph, and specific algorithms for those two types of graphical models can be seen
as special cases of algorithms acting on factor graphs, in the following we shall focus on algorithms for factor
graphs only.

6.3.1 Converting Graphical Models to Factor Graphs

Factor graphs are more flexible than graphical models, and in general there can be more than one factor
graph that is equivalent with a given graphical model.4 In the case of directed models, an expedient way to
convert the graphical model to a factor graph is to replace each individual probability distribution with a
factor. For example the graph depicted in Figure 6.2 corresponds to the factorisation

P (A,B,C,D) = p(B) p(C)P (A|B,C)P (D|A) (6.4)

We can create an equivalent factor graph, as depicted in Figure 6.4. In this graph, the factors are as follows:

fa(B) = p(B) (6.5)

fb(C) = p(C) (6.6)

fc(A,B,C) = p(A|B,C) (6.7)

fd(A,D) = p(D|A) (6.8)

3It is a function of the parameters of the potential functions but not of x.
4So, I probably won’t ask you for the factor graph equivalent of a given graphical model at the exam. In particular, if I ask

for the factorisation described by a graphical model, please don’t draw a factor graph. Give me an equation instead!
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A

B

C

D

fa

fb

N

fc
fd

Figure 6.4: A factor graph that is equivalent to the graphical model depicted in Figure 6.2

In the case of undirected graphical models, a good choice is to substitute each potential function with a
factor. For undirected models, the conversion can simply be done by assigning one factor node per potential
function, but if a potential function is itself the product of two factors, it is also possible to express this in
the factor graph by including a factor node for each factor of the potential function.

6.3.2 Sum-product algorithm

The purpose of probabilistic models is to compute the probability distribution of some variables, given that
other variables are observed. For example, we might want to know the probability that a flower should
be an Iris Versicolor, given her petal and sepal measurements. Computing such conditional probabilities
requires the computation of marginal probabilities. In our iris example, we could have modelled5 the prior
probability that an iris should be of a particular variety, p(V ), and the probability of the petal and sepal
lengths for different varieties of irises, p(Lp, Ls|V ). If we are now interested in knowing the probability that
an iris should be of a particular variety given the length of its petals and sepals, p(v|lp, ls), we use Bayes’
rule and compute:

p(v|lp, ls) =
p(lp, ls|v) p(v)

p(lp, ls)
. (6.9)

Notice how all terms in the numerator are known, while the denominator must be computed by marginalisa-
tion. In practice, it will often be the case that the variables we are interested in are not the only ones not to
be observed. For example, we may want to know the probability that a flower should be an Iris Versicolor,
given only its petal length and regardless of its sepal lengths. In that case, we need to marginalise out the
other variables as well:

p(v|lp) =
p(lp|v) p(v)

p(lp)
, (6.10)

where we had to marginalise out Ls in both numerator and denominator. The point is, of course, that
marginalisation is the key to inference in probabilistic models, and that without efficient marginalisation
inference is not possible.

The sum-product algorithm is an automated procedure to compute the marginal probability of a set of
variables exactly, as efficiently as possible for a given factorisation of the joint probability distribution. In
the following, we will first explore how the marginalisation can be done as efficiently as possible and then
proceed to developing this as an algorithm on graphs.
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A B C

Figure 6.5: Graphical model for the factorisation of p(A,B,C) = p(A) p(B|A) p(C|B)

Efficient inference in factorised distributions

Consider a system with three binary variables, A,B and C, where the joint probability of the variables,
p(A,B,C) is factorised as p(A) p(B|A) p(C|B). This factorisation is shown graphically in Figure 6.5. If we
wanted to compute the marginal probability p(B), since the variables are binary, we could compute

p(B) = p(a,B, c) + p(a,B,¬c) + p(¬a,B, c) + p(¬a,B,¬c) (6.11)

where, following our convention of using capital letters for the variables and minuscules for instantiations,
p(B) denotes the probability of any of B’s possible instantiations. We’re using binary variables in this

example, and so p(B) could be seen as a vector containing the values (p(b) p(¬b))>, but the argument holds
in general and so if B was a continuous variable, for example, p(B) would be a PDF encoding the probability
density for any of the possible value of the variable.

Notice how, in order to marginalise out two binary variables, we use four summations. In general, this
summation is exponential in the number of variables we are marginalising out. However, because according
to our factorisation, C is independent from A given B, we could compute our marginalisation as

p(B) = p(a) p(B|a) [p(c|B) + p(¬c|B)] + p(¬a) p(B|¬a) [p(c|B) + p(¬c|B)] (6.12)

= [p(a) p(B|a) + p(¬a) p(B|¬a)] [p(c|B) + p(¬c|B)] (6.13)

which requires only two summations. We used the distributivity of the addition and the product (i.e.,
ab+ ac = a(b+ c)) to minimise the number of operations needed in computing the marginal probability. It
is this, the order in which we perform the computations, which is the key to efficient marginalisation.

Efficient marginalisation on factor graphs

We will describe the sum-product algorithm with our example depicted in Figure 6.4. The formal derivation
and proof of the validity of the algorithm can be found in Section 8.4.4 of Bishop’s book; here we focus on
how to apply it, and show how it does indeed provide us with the desired quantities in the case at hand.

Suppose we want to know how likely it is for you to attend this lecture, p(A). This probability is given
by

p(A) =
∑
b

[
p(B = b)

∑
c1

· · ·
∑
cN

∏
n

[p(Cn = cn)] p(A|B = b, C1 = c1 . . . CN = cN )

]∑
d

p(D = d|A) (6.14)

This formula may seem pretty unfriendly, but let’s take a look at what it does. We take the sum over
all possible values of B, C1, . . . , CN and D of p(A,B,C1, . . . , CN , D), thus simply applying the sum rule of
probabilities to obtain the marginal probability p(A). But we do it in such a way, that every factor that
does not depend on the variable that we are summing over is, that is, every variable that can be taken out
of the sum, is indeed taken out. So, for example p(B) depends only on B, but p(A|B,C1, . . . , CN ) depends
on B,C1, . . . , CN . The sum-product algorithm provides a way to find this efficient order of the terms in the
equation mechanically, by passing messages over in the graph.

Application of the sum-product algorithm

Each node can transmit a message on one of its links when it has received messages on all of its other links.
The different types of nodes perform different actions:

5Remember that by convention uppercase letters denote random variables and lowercase letters denote instantiations.
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D
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N
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fdµ1(D)

µ2(B)

µ3(Cn)
µ4(A)

µ5(B)
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µ7(A)
µ8(A)

µ9(A)

µ10(D)

µ11(B)

µ12(Cn)

Figure 6.6: Messages passed in the factor graph for the sum-product algorithm.

A factor node takes the sum, over the possible values of the variable nodes that it receives messages from,
of the product of those messages with the function it represents. The message it transmits is therefore
a function of the variable it is sending to.

A Variable node takes the product of the incoming messages and transmits that. The message it transmits
is therefore a function of the value of the variable itself.

Let us apply this to our example graph, where the messages are depicted in Figure 6.6. The algorithm
starts at the leaves of the graph. These nodes have only one link, and can therefore transmit a message
immediately. In this case, those are nodes D, fa and fb. Since these nodes have no incoming messages, the
messages they transmit are reduced to:

µ1(D) = [1, 1] (6.15)

µ2(B) = [p(b), p(¬b)] (6.16)

µ3(Cn) = [p(cn), p(¬cn)] (6.17)

The messages that arrive in factor fd get multiplied, multiplied with fd(A,D) and summed over the
possible values of D, while the messages arriving in B and C simply get multiplied. Since in all cases only
one message is received, the resulting outgoing messages are:

µ4(A) = [1p(d|a) + 1p(¬d|a), 1p(d|¬a) + 1p(¬d|¬a)] (6.18)

= [1, 1] (6.19)

µ5(B) = [p(b), p(¬b)] (6.20)

µ6(Cn) = [p(c), p(¬c)] (6.21)

Now fc takes its incoming messages, multiplies them, multiplies them with its factor and sums over the
values of its incoming variables. The result is:

µ7(A) =

[ ∑
B=b,¬b p(B)

∑
C1
· · ·∑Cn

p(C1) · · · p(Cn) p(a|B,C1, . . . , Cn)∑
B=b,¬b p(B)

∑
C1
· · ·∑Cn

p(C1) · · · p(Cn) p(¬a|B,C1, . . . , Cn)

]
(6.22)

= [p(a), p(¬a)] (6.23)

The result is then given by the product of the incoming messages,

p(A) = µ4(A)µ7(A) = p(A) (6.24)
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Figure 6.7: Messages passed in the factor graph for the sum-product algorithm, where A = a is observed.

However, the marginal probability of all other variables can be found by keeping propagating messages,
indicated by messages µ8, . . . , µ12:

µ8(A) = [1, 1] (6.25)

µ9(A) = [p(a), p(¬a)] (6.26)

µ10(D) = [p(a)p(d|a) + p(¬a)p(d|¬a), p(a)p(¬d|a) + p(¬a)p(¬d|¬a)] (6.27)

= [p(d), p(¬d)] (6.28)

µ11(B) =

[ ∑
A

∑
C1
· · ·∑Cn

∏
p(Cn)p(A|b, C1, . . . , CN )∑

A

∑
C1
· · ·∑Cn

∏
p(Cn)p(A|¬b, C1, . . . , CN )

]
(6.29)

= [1, 1] (6.30)

µ12(Cn) =

[ ∑
A

∑
B

∑
C 6=Cn

∏
C 6=Cn

p(C)p(A|B,C1, . . . , Cn, . . . , CN )∑
A

∑
B

∑
C 6=Cn

∏
C 6=Cn

p(C)p(A|B,C1, . . . ,¬Cn, . . . , CN )

]
(6.31)

= [1, 1] (6.32)

(6.33)

so that the product of the incoming messages, in each variable node, results in the marginal probability of
that variable.

Dealing with observed variables

If some variables are observed, we simply introduce an extra factor connected to those variables only, which
is one for the observed value of the variable and zero otherwise. The rest of the algorithm is identical and
provides us, for each latent variable, with the marginal joint probability of that latent variable and the
observations. Figure 6.7 illustrates what the propagated messages become if I observe that you attended the
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lecture, where the messages take the following values:

µ1(D) = [1, 1] (6.34)

µ2(B) = [p(b), p(¬b)] (6.35)

µ3(Cn) = [p(cn), p(¬Cn)] (6.36)

µ4(A) = [1, 0] (6.37)

µ5(A) = [1, 1] (6.38)

µ6(B) = [p(b), p(¬b)] (6.39)

µ7(Cn) = [p(c), p(¬c)] (6.40)

µ8(A) = [1× 1, 1× 0] = [1, 0] (6.41)

µ9(A) = [p(a), p(¬a)] (6.42)

µ10(Cn) =

[ ∑
B

∑
C 6=Cn

∏
C 6=Cn

p(C)p(a|B,C1, . . . , Cn, . . . , CN )∑
B

∑
C 6=Cn

∏
C 6=Cn

p(C)p(a|B,C1, . . . ,¬Cn, . . . , CN )

]
(6.43)

= [p(a|Cn), p(a|¬Cn] (6.44)

µ11(B) =

[ ∑
C1
· · ·∑Cn

∏
p(Cn)p(a|b, C1, . . . , CN )∑

C1
· · ·∑Cn

∏
p(Cn)p(a|¬b, C1, . . . , CN )

]
(6.45)

= [p(a|b), p(a|¬b)] (6.46)

µ12(A) = [p(a), 0] (6.47)

µ13(D) = [p(d|a) p(a) + p(d|¬a) 0, p(¬d|a) p(a) + p(¬d|a) 0] (6.48)

= [p(a, d), p(a,¬d)] (6.49)

From the marginal distributions that we obtained, p(a,D), p(a,B), p(a,Cn), we can compute conditional
probabilities using Bayes’ theorem. For example,

p(d|a) =
p(a, d)

p(a)
=
µ13(d)

µ12(a)
(6.50)

6.3.3 max-sum algorithm

The sum-product algorithm provides us with an efficient way to compute the marginal probability of a
variable. Sometimes, however, we are not interested in the conditional probability of the latent variables
given the observations; rather, we would like to know what the most likely, joint state of these latent variables
is. For example, I may not be interested to know what the probability is that your bike is broken, or what
the probability is that you enjoyed some dodgy substance or the other. Instead, I may like to know what
the most likely combination of factors caused you not to come to a lecture. This result is obtained by the
max-sum algorithm.

The max-sum algorithm is basically the same algorithm as the sum product algorithm. The same sequence
of messages is propagated, where the probabilities are replaced by log probabilities, the products by sums
and sums by max operators. For each node, this provides us with the information of: (1) what the most likely
state of that node is, given the most likely states of all other nodes in the graph, (2) what the probability
is of that state of the graph, and (3) what state of its neighbours brought it to this most likely state. Once
the last node in the graph has received a message on all its links, we then backtrack to store, for each node,
what state of that variable resulted in the most probable state of the total system.

I’d work this out for our example, but since it’s really the same as before, and since I feel rather woozy
from all the that I’ve been having myself, I think I’ll leave that for you to do as an exercise.

6.4 Dynamic Bayesian Networks

Until now, we have been assuming that the number of variables in the system was known and fixed before-
hand. Sometimes, however, it is useful to consider systems where the number of variables is dynamic. For
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example, we could consider time sequences, where the number of observations increases over time, or models
of DNA sequences, where the number of base pairs that constitute a gene is not known beforehand. Such
models of sequential data are just graphical models, but because of their interest and specific properties, they
deserve to be considered explicitly. These models have been described long before graphical models them-
selves were developed as a paradigm, and the same algorithms used in graphical models (sum-product and
max-sum) are known by different names in the case of sequential models, namely as the Forward-Backward
and Viterbi algorithms.

Coming up. . .
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Chapter 7

Learning in Graphical Models

In the previous chapter, we have seen how we could use the factorisation of the joint probability distribution
to compute the marginal probability of variables efficiently. We have also seen automated procedures on
the graph, which allow us to find the order in which to do the computations with optimal efficiency. To
compute these marginal probabilities, the joint probability distribution had to be known. More specifically,
the parameters of the functions describing the factorised probability distributions (or pdfs) were known.

Due to the complexity of the models that are typically described by graphical models, it is often not
possible to integrate out the parameters of these distributions and the parameters are then learnt by maxi-
mum likelihood or maximum a posteriori learning. In this chapter, we investigate how this can be done. We
use an example model, the Gaussian mixture model (GMM) to illustrate the techniques we develop, but of
course these techniques are more widely applicable.

7.1 Fully observed model

Let us first consider a fully supervised classification problem. We are given the data depicted in Figure 7.1,
where both the measurements xi and the class labels zi are given. We want to model the distribution of the
data for each class independently, and choose to use a Gaussian distribution to do so. So, for each datapoint,
we want the joint probability of that datapoint and its label to be given by

p(xi, zi) =

{
p(C1)p(xi|C1) if zi = 1

p(C2)p(xi|C2) otherwise (That is, if zi = 0)
(7.1)

where:

p(C1) = ρ (7.2)

p(C2) = 1− ρ (7.3)

p(xi|C1) = N (x1;µ1,Σ1) (7.4)

p(xi|C2) = N (x1;µ2,Σ2) (7.5)

The corresponding graphical model is given in Figure 7.2. Thanks to our clever encoding of the labels, we
can use the same trick as in the Bernoulli distribution, and raise the relevant probability to the power of zi.
The likelihood is then given by:

p(x1, . . . ,xN , z1, . . . , zN |θ) =

N∏
i=1

(
ρN (xi;µ1,Σ1)

)zi (
(1− ρ)N (xi;µ2,Σ2)

)1−zi
(7.6)
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Figure 7.1: Supervised classification of continuous, 2-dimensional data
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Figure 7.2: Graphical model for supervised classification
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where, again, zi = 1 if xi ∈ C1 and zi = 0 otherwise, ρ = p(C1) is the prior probability that a datapoint
belongs to class C11, and N (·) indicates the Gaussian PDF:

N (x;µ,Σ) =
1

(2π)d/2|Σ|1/2 exp[− 1
2 (x− µ)>Σ−1(x− µ)] . (7.7)

Notice that this can be generalised to more than two classes, by using a 1-of-N encoding for the class label
zi. To find the maximum likelihood parameters, we take the logarithm of the likelihood, take the derivative
with respect to the parameters we want to use and set this derivative equal to zero. Below, I will derive the
solution in a lot of detail. This serves two purposes: (1) to show you how it’s done; the same technique is
used for any graphical model, and (2) I am hoping that you will follow the steps, and that they will seem
understandable and perhaps even vaguely familiar, and that it may help you to see a page of scary equations
and look at it, and understand it, without skipping over it. The purpose is explicitly not to make the page
look scary.2

Filling in Eq. (7.7) in Eq. (7.6) and taking the logarithm results in the log-likelihood (denoted `(θ),
because the data is considered fixed and the parameters are not):

`(θ) =

N∑
i=1

zi
(
ln ρ− 1

2 (d ln 2π + ln |Σ1|)− 1
2 (xi − µ1)>Σ−1

1 (xi − µ1)
)

+

(1− zi)
(
ln(1− ρ)− 1

2 (d ln 2π + ln |Σ2|)− 1
2 (x− µ2)>Σ−1

2 (x− µ2)
)

(7.8)

Taking the first derivative with respect to ρ and setting it equal to zero results in:

N∑
i=1

zi
1

ρ
+ (1− zi)

1

1− ρ (−1) = 0 =⇒
N∑
i=1

zi(1− ρ)− (1− zi)ρ
ρ(1− ρ)

= 0 =⇒ (7.9)

N∑
i=1

zi − ρ
N∑
i=1

zi − ρ
N∑
i=1

(1− zi) = 0 =⇒ ρ =
NC1

NC1 +NC2
(7.10)

where we have introduced NC1 =
∑N
i=1 zi and NC2 =

∑N
i=1(1− zi), the number of datapoints in class C1 and

C2, respectively.
To take the first derivative with respect to the mean, we call Petersen and Pedersen [2006] to the rescue.

We get:

∂`(θ)

µ1

=

N∑
i=1

ziΣ
−1
1 (xi − µ1) (7.11)

∂`(θ)

µ2

=

N∑
i=1

(1− zi)Σ−1
2 (xi − µ2) (7.12)

(using (79) in the matrix cookbook) and

(7.13)

∂`(θ)

Σ−1
1

= − 1
2

N∑
i=1

zi
(
Σ−1

1 −Σ−1
1 (xi − µ1)(xi − µ1)>Σ−1

1

)
(7.14)

∂`(θ)

Σ−1
2

= − 1
2

N∑
i=1

(1− zi)
(
Σ−1

2 −Σ−1
2 (xi − µ2)(xi − µ2)>Σ−1

2

)
(7.15)

1We are using ρ for this rather than the more conventional π, to avoid confusion with the value of π = 3.1415 . . . that crops
up in the Gaussian distribution.

2Also, as a side note, always remember that you’re smarter than me. I’ve had more time to process things than you have,
but you’re younger and can process new stuff faster than I can.
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using (51) and (55) in the same text, where we have used that the covariance matrix is symmetric, so that
Σ> = Σ. Setting Eq. (7.11) equal to zero, we get the matrix equivalent of the familiar computation of the
data mean:

N∑
i=1

ziΣ
−1(xi − µ1) = 0 =⇒ Σ−1

N∑
i=1

zi(xi − µ1) = 0 =⇒

N∑
i=1

zi(xi − µ1) = 0 =⇒
N∑
i=1

zixi =

N∑
i=1

ziµ1 =⇒

N∑
i=1

zixi =

N∑
i=1

ziµ1 =⇒ µ1 =

∑N
i=1 zixi∑N
i=1 zi

(7.16)

In other words: µ1 is the data mean of the datapoints that belong to C1. The same derivation can be done
for µ2, and results in the mean of the datapoints from class C2.

Similarly, setting Eq. (7.14) equal to zero results in the familiar equation for the covariance matrix:

− 1
2

N∑
i=1

zi
(
Σ−1

1 −Σ−1
1 (xi − µ1)(xi − µ1)>Σ−1

1

)
= 0 =⇒

N∑
i=1

ziΣ
−1
1 =

N∑
i=1

ziΣ
−1
1 (xi − µ1)(xi − µ1)>Σ−1

1 =⇒

Σ−1
1

N∑
i=1

zi = Σ−1
1

[
N∑
i=1

zi(xi − µ1)(xi − µ1)>

]
Σ−1

1 =⇒

Σ1

[
Σ−1

1

N∑
i=1

zi

]
Σ1 = Σ1Σ

−1
1

[
N∑
i=1

zi(xi − µ1)(xi − µ1)>

]
Σ−1

1 Σ1 =⇒

Σ1

N∑
i=1

zi =

N∑
i=1

zi(xi − µ1)(xi − µ1)> =⇒

Σ1

N∑
i=1

zi =

N∑
i=1

zi(xix
>
i − xiµ

>
1 − µ1x

>
i + µ1µ

>
1 ) =⇒

Σ1 =

∑N
i=1 zixix

>
i∑N

i=1 zi
−
∑N
i=1 zixi∑N
i=1 zi

µ>1 − µ1

∑N
i=1 zix

>
i∑N

i=1 zi
+ µ1µ

>
1 =⇒

Σ1 =

∑N
i=1 zixix

>
i∑N

i=1 zi
− µ1µ

>
1 − µ1µ

>
1 + µ1µ

>
1 =⇒

Σ1 =
1∑N
i=1 zi

N∑
i=1

zixix
>
i − µ1µ

>
1 (7.17)

7.2 k-means

Now let us suppose that we are not given any labels for the data. We would still like to model two clusters, but
we don’t know beforehand which cluster each datapoint should belong to. We could enumerate all possible
assignment combinations, compute the parameters as explained above for each combination, compute the
resulting likelihood and keep the assignment combination and corresponding parameters that result in the
highest likelihood.

This would give us the maximum-likelihood parameters for our model, but it doesn’t scale. While in
our original model with known labels the datapoints were independent and we could compute the param-
eters in closed form, now we need to list all possible combinations of datapoint-cluster assignments, which
is impossible for even moderately sized datasets. Luckily, although finding the global optimum for the
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Figure 7.3: Animation illustrating the k-means algorithm on the old-faithful dataset. Five iterations are
performed, with two clusters (k = 2). Each iteration consists of two steps: in the first step, each datapoint
is assigned to the closest mean. In the second step, each mean is updated according to the datapoints that
are assigned to it. At each step, the average distance from each datapoint to its assigned mean is computed
and plotted in the graph on the right-hand side. After five iterations, no change happens in the assignments:
the algorithm has converged (although it would need an extra, sixth iteration, to know that; this is omitted
from the animation to keep it compact.)

maximum-likelihood parameters is intractable, we can still devise algorithms that may not be guaranteed to
find the global optimum in the parameter space, but will in general find a good local optimum.

To illustrate this, we first consider the k-means algorithm. This clustering technique (also called “vector
quantisation” in some fields,) can be seen as a special case of the Gaussian mixture model where not all
parameters are optimised. Let us first investigate the properties of k-means; afterwards, we will take a
closer look at the relationship between k-means and GMM below, and will then generalise the algorithm to
unconstrained GMMs and to other graphical models.

The algorithm for k-means is as follows. Given the number of clusters, k:

1. Initialise the means of the clusters at random

2. Assign each datapoint to the closest mean

3. Update the mean of the cluster by computing the mean of its assigned datapoints

4. Repeat from step 2 until the update results in no change.

The effect of this algorithm is illustrated on the “old faithful” dataset with two clusters, in Figure 7.3.
The data has first been normalised to have zero mean and unit variance along each dimension: this is not
necessary, but ensures that right angles are preserved in the graphic. If I hadn’t normalised the data, the
discriminant would be correct but look incorrect with respect to the plotted means.

7.2.1 Notes on k-means

Some things to node about the algorithm are:
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Figure 7.4: Illustration of how k-means fails on elongated clusters, due to the use of Euclidean distance. The
solution we converge to is the global optimum, but notice how the algorithm can converge to other, locally
optimal solutions depending on the initial parameter values. For example, if we initialise the means to be
the means of the elongated clusters, the algorithm does not find a better (higher-likelihood) solution.

Distance measure Kmeans uses the Euclidean distance. This limits the applicability of the algorithm
to some types of data, and suffers from the same problem as the kNN classifier described earlier. If
clusters are elongated more than they are distant from each other, the resulting clustering will not
separate the original clusters. This is illustrated in Figure 7.4. Moreover, the use of Euclidean distance
additionally makes kmeans sensitive to outliers. Other distance metrics can be used, of course, but the
choice of distance metric is very data-dependant, and we would therefore want to learn such things
automatically.

Hard assignment Each datapoint is assigned to one and only one cluster. Datapoints that are distant
from the cluster mean carry the same weight as datapoints which are close to the mean, and affect
the updates as much. Especially when the data distribution is complex, one would prefer to have soft
assignments, where each datapoint contributes to the update of a cluster’s parameters according to the
probability that it does indeed belong to that cluster. The EM algorithm for GMM, described next,
does just that.

7.3 Gaussian Mixture Model

The GMM is a linear combination of Gaussian distributions. Such a combination can serve two purposes:

1. To describe complex probability densities

2. For clustering

In the first case, which Gaussian a datapoint is “assigned” to has no further meaning.3 The combination
of Gaussians can approximate any density arbitrarily closely, given sufficient Gaussians, and it is the final
distribution that is important. This is illustrated in Figure 7.5. In the second case, the purpose is to

3As we will see, in reality each datapoint is assigned to all clusters, each with a certain probability. There are no real
assignments.
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Figure 7.5: Representing a complex distribution (black line) with a mixture of three Gaussians (red, green
and blue lines)

find underlying structure in the data, and which cluster a datapoint “belongs to” can be important. The
underlying model is the same, however, so we shall not dwell further over these trivia.

The graphical model corresponding to the GMM is depicted in Figure 7.6. It is equivalent to the model
of Figure 7.2, except that the assignment of a datapoint to a Gaussian is not observed. Mathematically,
the complete likelihood function (that is, the probability of the data and the labels given the parameters as
opposed to the incomplete likelihood, which is the probability of the data — only – given the parameters)
is identical to the supervised case. We repeat it here, but will take the opportunity to consider the case of
K Gaussians, for generality. To do this, we represent the assignment of datapoint xi by vector zi, which
contains all zeroes, except zi(j) = 1 for the Gaussian Cj it is assigned to. (We keep using the notation Cj to
indicate the jth Gaussian, to avoid introducing new, superfluous symbols. But remember that, as discussed
before, the Gaussians may not represent different classes at all.) We can then write that

p(xi, zi) =


p(C1) p(xi|C1) if zi(j) = 1

...

p(CK) p(xi|CK) if zi(K) = 1

(7.18)

where we parametrise the different probabilities as

p(C1) = ρ1 . . . p(CK) = ρK (7.19)

p(xi|C1) = N (x1;µ1,Σ1) . . . p(xi|CK) = N (x1;µK ,ΣK) (7.20)

with the additional constraint that the prior probabilities must sum up to one:
∑K
k=1 ρk = 1. Based on this,

we can write down the complete likelihood:

p(xi, zi) =

K∏
k=1

(ρkN (xi;µk,Σk))zi(k) (7.21)

Since we don’t observe zi, we are really interested in p(xi), which we can get by marginalisation: p(xi) =
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Figure 7.6: Graphical model for the GMM

∑
zi
p(xi, zi). And since zi is a vector of length K with only one non-zero element, we get:

p(xi) =

K∑
k=1

ρkN (xi;µk,Σk) (7.22)

This is the quantity that is plotted with a black line in Figure 7.5, for the possible values of a single,
one-dimensional datapoint x. For the complete dataset we get, therefore,

p(x1, . . . ,xN ) =

N∏
i=1

K∑
k=1

ρkN (xi;µk,Σk) . (7.23)

This is the likelihood4, and this is the quantity that we want to optimise.
Optimising the likelihood is not trivial, because the product of sums means that when we take the

first derivative with respect to one parameter, this derivative will be a non-linear function of all the other
parameters, so that no closed-form solution can, in general, be found.

7.4 Gradient Descent

Let us first take the first derivative of the log-likelihood with respect to ρk. The log-likelihood is given by

ln p(x1, . . . ,xN ) =

N∑
i=1

ln

K∑
k=1

ρkN (xi;µk,Σk) . (7.24)

Using the chain rule of derivatives, we get:

∂

∂ρk
ln p(x1, . . . ,xN ) =

N∑
i=1

1∑K
k=1 ρkN (xi;µk,Σk)

N (xi;µk,Σk) (7.25)

Notice how this derivative depends on ρ1, . . . , ρK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK . I chose to use ρk because that
parameter is outside of the normal distribution, and therefore the simplest to optimise for, but the same holds
when we try finding the derivative with respect to any other parameter. And hence, setting the derivative
equal to zero and solving for the desired parameters does not yield a closed-form solution.

We can, however, compute the derivative at any point in the parameter space: for given values of the
parameters, we can compute what the gradient is of the log-likelihood. We can use this to optimise the
log-likelihood iteratively, by computing and following the gradient at each step. This is a valid method,
which is indeed applied in practice. However, care must be taken when performing gradient descent:

1. As always in gradient descent, the step size can be hard to choose, and convergence can be slow

4The distinction between complete and incomplete likelihood is not always made explicit, but the term “likelihood” should
always denote the probability of the observations given the parameters.
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Figure 7.7: Expectation maximisation for the Gaussian mixture model

2. Constraints are not enforced. Simply doing gradient descent using the gradient of the log-likelihood will
not result in a valid optimum, because no constraint is enforced on ρ1, . . . , ρK : these are probabilities,
and must therefore be non-negative and sum up to one. In order to enforce this, one can parametrise
the priors with the softmax function, as ρk = exp ρk∑

j exp ρj
, and use the chain rule to compute the derivative

with respect to ρk instead.

7.5 Expectation-Maximisation

The intuition behind the EM algorithm is as follows. We know the form of the complete log-likelihood and
we know how to optimise it, but we don’t have all the required observations, so we can’t optimise that
directly. We also know the form of the (incomplete) log-likelihood, and we do have all the observations for
that one, but optimising it is hard. The idea is then that we could compute what the expectation of the
complete log-likelihood (as this is our best estimate of what the real complete log-likelihood would be), and
optimise that instead. The expectation of the complete log-likelihood has the same form as the complete
log-likelihood itself, so optimising it should be easy. Of course, when we mention “expectation”, some
probability distribution is implied, and the purpose of the whole thing here is to find the parametrisation
of that distribution, so we have a bit of a chicken-and-egg problem. The key idea of the EM algorithm is to
start with some joint distribution over the variables (which may be quite unlike the real distribution), use
this to compute the expectation of the joint log-likelihood, find the parameters that optimise this expectation
and iteratively use the new parameters to recompute the expectation. This iterative procedure is shown in
Figure 7.7 for a GMM with two Gaussian distributions: on the right-hand side, the data and the Gaussian
distributions are plotted; on the left-hand side, the (incomplete) log-likelihood is plotted for each iteration.

Below, we shall first develop the EM optimisation procedure for the GMM, after which we will explore
in some more detail why the algorithm works and why it is guaranteed to converge to some (local) optimum
of the log-likelihood function. We are optimising a function Q with two different sets of parameters: the
parameters from the previous iteration θold, which are known, and the parameters of the distribution θ, that
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we want to find in this iteration:

Q(θold,θ) = Eθold [ln p(x1, . . . ,xN , z1, . . . , zN )] (7.26)

=
∑

z1,...,zN

p(z1, . . . , zN |x1, . . . ,xN ,θ
old)

N∑
i=1

ln p(xi, zi|θ) (7.27)

where the two sums can be swapped because the datapoints are independent:

=

N∑
i=1

∑
zi

p(zi|xi,θold) ln p(xi, zi|θ) (7.28)

Here, we have that p(zi|xi,θold) can be written as

p(zi|xi,θold) =

K∑
k=1

zi(k)p(Ck|xi,θold) , (7.29)

the probability of the assignment vector zi is the probability that the datapoint belongs to the Gaussian k, for
the nonzero dimension zi(k).5 The posterior probability p(Ck|xi,θold) is sometimes called the “responsibility”
of Gaussian k for the datapoint, and is then denoted as γk(xi). It is computed using Bayes’ rule.

γk(xi) =
ρkN (xi;µk,Σk)∑
j ρj N (xi;µj ,Σj)

(7.30)

The other quantity in Eq. (7.28) is ln p(xi, zi|θ), the logarithm of the complete log-likelihood given in
Eq. (7.21):

ln p(xi, zi) =

K∑
k=1

zi(k) [ln ρk + lnN (xi;µk,Σk)] (7.31)

Filling these quantities into Eq. (7.28) and remembering that all zi(k) = 0 except for one which is one,
we can combine the sums over k and obtain:

Q(θold,θ) =

N∑
i=1

K∑
k=1

γk(xi)
[

ln ρk + lnN (xi;µk,Σk)
]

(7.32)

7.5.1 Maximisation

Now we’re getting there. All we need to do now, is compute the values of the parameters θ = {ρ,µ,Σ} that
maximise Q(θold,θ). We take the derivative and set it equal to zero, and obtain:

∂Q(θold,θ)

∂µk
= 0 =⇒

N∑
i=1

γk(xi)Σ
−1
k (xi − µk) = 0 =⇒ (7.33)

N∑
i=1

γk(xi)xi =

N∑
i=1

γk(xi)µk =⇒ µk =

∑N
i=1 γk(xi)xi∑N
i=1 γk(xi)

(7.34)

5We used a sum rather than a product, because we will not want to take the logarithm of this quantity, later on. The effect
is the same, though: only one of the terms matters.
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and similarly for the covariance,

∂Q(θold,θ)

∂Σk
= 0 =⇒ (7.35)

N∑
i=1

γk(xi)
[
Σ−1
k −Σ−1

k (xi − µk)(xi − µk)>Σ−1
k

]
= 0 =⇒ (7.36)

Σk

N∑
i=1

γk(xi) =

N∑
i=1

γk(xi)
[
(xi − µk)(xi − µk)>

]
=⇒ (7.37)

Σk =

∑N
i=1 γk(xi)

[
(xi − µk)(xi − µk)>

]
∑N
i=1 γk(xi)

=⇒ (7.38)

Σk =

∑N
i=1 γk(xi)

[
xix
>
i − 2xiµ

>
k + µkµ

>
k

]
∑N
i=1 γk(xi)

=⇒ (7.39)

Σk =

∑N
i=1 γk(xi)xix

>
i∑N

i=1 γk(xi)
− 2µk

∑N
i=1 γk(xi)x

>
i∑N

i=1 γk(xi)
+ µkµ

>
k =⇒ (7.40)

Σk =

∑N
i=1 γk(xi)xix

>
i∑N

i=1 γk(xi)
− µkµ>k (7.41)

Finally, to find the optimal priors ρk, we need to enforce the rules of probability: the priors must sum up
to one. As always, we do that with a Lagrange multiplier (Appendix A). The Lagrangian is then given by

N∑
i=1

K∑
k=1

γk(xi)
[

ln ρk + lnN (xi;µk,Σk)
]

+ λ(
∑
k

ρk − 1) (7.42)

Taking the derivatives results in the following K equations:{∑N
i=1 γk(xi)

/
ρk + λ = 0 ∀k ∈ [1 . . .K] (A)∑K

k=1 ρk = 1 (B)
(7.43)

From (A), we get

λρk = −
N∑
i=1

γk(xi) (7.44)

and by summing both sides over all K Gaussians, we get

λ

K∑
k=1

ρk︸ ︷︷ ︸
1

= −
N∑
i=1

K∑
k=1

γk(xi)︸ ︷︷ ︸
1

(7.45)

λ = −N (7.46)

(7.47)

And so we get:

ρk =

∑N
i=1 γk(xi)

N
(7.48)

7.6 Why EM works

In the above, we have given the intuitive meaning of the EM algorithm, namely that the closest thing we can
find to the incomplete likelihood is the expectation of the complete likelihood under the posterior distribution
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of the latent variables. The idea was then that, since that’s the best we could do, we might as well do it. In
this section, we will see that this is indeed a valid thing to do, and that iteratively optimising the expectation
of the complete likelihood does indeed maximise the (incomplete) likelihood.

To prove that, we will have to do some magical shuffling around with equations. It may not be clear
where we’re going in the beginning, but do read on and try to follow the steps: I hope that it will make
sense in the end.

The idea is the following: from the product rule of probabilities, we have that:

p(X,Z|θ) = p(Z|X,θ) p(X|θ) and, therefore: (7.49)

p(X|θ) =
p(X,Z|θ)

p(Z|X,θ)
(7.50)

If we introduce a random distribution over the latent variables Z, we have that:

1. The distribution q(Z) is normalised, so that ∑
Z

q(Z) = 1 (7.51)

2. we can do the following:

p(X|θ) =
p(X,Z|θ)

q(Z)

q(Z)

p(Z|X,θ)
(7.52)

and, therefore:

ln p(X|θ) = ln
p(X,Z|θ)

q(Z)
− ln

p(Z|X,θ)

q(Z)
(7.53)

Leaving this aside for a moment, let’s have a look at ln p(X|θ). Since ln p(X|θ) does not depend on Z and
q(Z) is normalised, we have:

ln p(X|θ) = ln p(X|θ)
∑
Z

q(Z) (7.54)

=
∑
Z

q(Z) ln p(X|θ) (7.55)

Filling in Eq. (7.53), this gives us:

ln p(X|θ) =
∑
Z

q(Z) ln
p(X,Z|θ)

q(Z)
−
∑
Z

q(Z) ln
p(Z|X,θ)

q(Z)︸ ︷︷ ︸
KL(p || q)

(7.56)

And now things get interesting, because we recognise the formula for the Kullback-Leibler divergence in
the second term of the right-hand part of Eq. (7.56). We have seen in subsection 5.8.1, relying on Jensen’s
inequality (see Appendix D), that the KL-divergence between any two distributions is always non-negative.
As a consequence,

ln p(X|θ) >
∑
Z

q(Z) ln
p(X,Z|θ)

q(Z)︸ ︷︷ ︸
L(q,θ)

(7.57)

In other words, L(w,θ) is a lower bound for p(X|θ), the quantity that we really want to optimise. In the
EM algorithm, it is this lower bound that we optimise iteratively.

The EM algorithm alternates two steps:
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Figure 7.8: Expectation maximisation for the Gaussian mixture model on the same elongated clusters as
Figure 7.4. Notice how despite the bad initialisation, the algorithm still converges to a solution where both
clusters are correctly modelled.

E-step During the E-step, we set q(Z) = p(Z|X,θold). By doing this, we make KL(p || q) equal to zero, so
that L(q,θ) = ln p(X|θ): the lower bound is then tight.

M-step During the M-step, we maximise Q(θ,θold) with respect to θ. Since we have set q(Z) = p(Z|X,θ)
during the E-step, the lower bound has become:

L(q,θ) =
∑
Z

q(Z) ln
p(X,Z|θ)

q(Z)
(7.58)

=
∑
Z

p(Z|X,θold) ln p(X,Z|θ)−
∑
Z

p(Z|X,θold) ln p(Z|X,θold) (7.59)

=
∑
Z

p(Z|X,θold) ln p(X,Z|θ)− const (7.60)

In other words: maximising the expectation of the complete log-likelihood (Q(θ,θold)) is equivalent to
maximising the lower bound on the incomplete log-likelihood.

Moreover, since the KL-divergence KL(p||q) is only zero when p equals q and q does not change in
the M-step but p does (unless it is already at a maximum), the incomplete log-likelihood is guaranteed to
increase more than the lower bound did. This makes the EM algorithm a particularly effective optimisation
procedure.
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7.7 k-means versus GMM

The k-means algorithm is a special case of the EM algorithm for GMM, where we keep the covariance fixed,
for all clusters, as Σ = εI in the limit of ε→ 0. The assignment step of k-means is the E-step of EM where,
due to the zero covariances, the responsibilities are zero or one, and the update step is the maximisation
step, where we maximise the expectation of the complete log-likelihood with respect to the means.

Both algorithms have some complementary strengths and weaknesses.

Singularities The greatest weakness of the GMM, is that the problem is inherently ill-posed. Because the
parameters of the Gaussian distributions are unconstrained, a Gaussian modelling a single point will
have a covariance equal to zero, and contribute a density of +∞ at that point. Since the other densities
are necessarily non-negative, the maximum incomplete likelihood will also be +∞. But this does not
model the real distribution of the data well at all; it is an example of the extreme overfitting that
maximum-likelihood methods are prone to.

Because it constrains the covariances to be zero for all Gaussians, k-means does not suffer this weakness

Unbalanced sizes We have seen in Figure 7.4 that the k-means algorithm could not handle clusters well
if they were very elongated, because it cannot take the shape of the cluster into account. The GMM
performs much better in such cases, as shown in Figure 7.8. In effect, because we take the covariance
matrix into account, we obtain a distance measure (called the Mahalanobis distance) where not all
dimensions are weighted equally. This distance measure is automatically adapted to the dataset when
we adjust the covariance matrix.

Speed of convergence Because k-means updates fewer parameters, its search space is much more limited
than the general algorithm for GMM. It will therefore typically require fewer iterations to converge
to an optimum, and will have fewer local optima. The individual iterations are also less complex and
therefore slightly faster.

Identifiability An issue that arises in both k-means and GMM is that there are multiple (K! to be precise)
equivalent solutions for a given dataset: the identity of the clusters does not affect the likelihood and
all of those solutions are equivalent. For density estimation this does not matter, but when trying to
interpret the results or compare different solutions, this becomes an issue.
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Chapter 8

Neural Networks

In chapter 4, we have seen how perceptrons, a crude mathematical model of how biological neurons work,
could learn parameters to perform linear classification using a surprisingly simple learning rule. The problem
with perceptrons was that the were limited to linear classification: if we try to combine perceptrons so that
one perceptron would take the output of the other as input, then such a construct could compute more
complex, non–linear functions but the perceptron learning algorithm could not be applied and, due to the
discontinuous activation function, the derivative cannot in general be used to find the model parameters.

In that same chapter, we have also seen that it is possible to transform a problem by representing it in a
different vector space, using fixed basis functions, in such a way that a problem that is hard in the original
space becomes easy in the new space. The problem, then, was that although such transformations can be
found, it was not clear how the precise parametrisation of these functions could be found.

Multi–layer perceptrons (MLP) are inspired from this, and provide a way to combine multiple layers of
perceptrons (albeit with a different activation function), so that one layer in effect provides a set of basis
functions to transform the data, while the next layer performs the actual regression or classification task in
this new space.

8.1 Feed–forward Neural Networks

Each node j in a Multi–layer perceptron computes an output zj which is function of its inputs of the form:

zj = f(aj) , (8.1)

where f(·) is a differentiable, non-linear activation function1 and the activation aj is weighted sum of the
inputs:

aj =

Mj∑
i=1

wjiznj
i

+ wj0 (8.2)

Here, we sum over the Mj nodes that are connected to provide input to node j, wji is the weight associated

with input i of node j and wj0 is a fixed bias to node j, while nji is the index of the node connected to the
ith input of node j. As usual, we can use a vector inner product to represent this sum, and we can extend
the vector of inputs with a dimension that is fixed to one to incorporate the bias in the vector sum. Using
wj to denote the vector of weights (wj0, wj1, . . . , wjM )> and zj to denote the vector (1, zjnj

1
, . . . , zjnj

M
)>,

this becomes

aj = w>j zj (8.3)

The input nodes are not computational nodes, and the “output” zi of these nodes is simply the input value
xi.

1Output nodes are not restricted to non-linear activation functions, but the other nodes are
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x0

x1

x2

x3

x4

x5

x6

y

Figure 8.1: Example of a feed–forward neural network with two input nodes, one hidden layer with three
nodes and a single output node. The shaded nodes are included to indicate the extra weight used for the
bias; their value is fixed to one.

Heaviside

σ(x)

tanh(x)

Figure 8.2: Different activation functions: the Heaviside step function (black, plain) used in perceptrons, and
the logistic sigmoidal (dashed blue) and hyperbolic tangent (green, dashed-dotted) used in neural networks

Such multi–layer perceptrons can be visualised graphically, and an example of this is depicted in Fig-
ure 8.1. In this case, we have a 2-layer network2: a layer of three hidden nodes and a layer of one output node.
The two input variables are also depicted as nodes in the graph, but they don’t perform any computations,
and the shaded nodes are not computational nodes. Their value is fixed to one, so that the corresponding
weight for the nodes they are connected to is a fixed bias.

These networks are constrained, in that the connections are “one-way”: nodes cannot have input values
which depend on their own output. As we will see in a moment, this constraint is required to make training
possible. Such networks are, therefore, called feed-forward neural networks. Notice that in a multi-layer
structure, not all nodes from one layer need be connected to all layers of the next, nor is there a constraint
that the inputs of a node must come from the previous layer: connections can skip layers.

The outputs of the network are then computed by propagating the input values forward through the
network, and the outputs of the current layer are used as inputs to the future nodes, until the output nodes
are reached and the output values are computed. The activation functions of the nodes in the hidden layer
must be non-linear functions in order for the final function to be non-linear (a linear function of a linear
function is itself a linear function, and is therefore not very interesting). For the output nodes, however, this
constraint does not apply and, which is more, the use of a “squashing function” in the output nodes reduces
the range in which the output values can lie. Depending on the desired output, it is therefore often useful
to use a linear activation function for the output nodes.

8.2 Training

The major change that made MLP possible is the use of a differentiable activation function. Where the
perceptron used a discontinuous step function, MLPs use a continuous function such as the logistic sigmoidal
function σ(x) or the hyperbolic tangent. These functions are a typical choice because of the ease with which
their derivatives can be computed, and are compared to the Heaviside step function in Figure 8.2. They are

2The way layers are counted in the literature is a bit vague. By convention, in these lecture notes, we consider the number
of layers of computing nodes
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w21 w32 w43

Figure 8.3: A first, very simple neural network

defined as:

σ(x) =
1

1 + e−x
tanh(x) =

ex − e−x
ex + e−x

(8.4)

It is a good exercise to verify that the derivatives of these functions are given by

d σ(x)

dx
= σ(x)(1− σ(x))

d tanh(x)

dx
= 1− tanh2(x) (8.5)

which are both particularly cheap to compute, since the value of the function itself is typically already
computed during the evaluation of the network function.

During training, we want to find the values for the weights wji, for all nodes, which makes the outputs
optimal in some sense. Since the output of the network is a non-trivial function of the inputs and of the
parameters, this is not possible in closed form. However, thanks to the structure of the network and since
the activation functions are differentiable, we can compute the gradient of the output with respect to the
parameters. We can therefore train the network by gradient descent. The question is then how we can
effectively compute this gradient for any given neural network. We address this question in the next section.

8.3 Backpropagation

The structure of an MLP is constrained in two important ways:

1. Each node computes a weighted sum of its inputs.

2. The output of a node does not affect its inputs (there are no loops).

These constraints are important, because they provide us with a functional structure in which it is easy to
compute the derivative of the output (or some function of the output) with respect to any of the weights in
the network. The algorithm to compute these derivatives is called backpropagation (because it is based on
propagating information back from the outputs towards the inputs). In the following, we gradually build up
more complex networks to explain how this works.

8.3.1 Introduction by example

First, let us consider a simple network of one input, one hidden layer and one output. Such a network is
depicted in Figure 8.3. This network computes the following function if the input x:

f(x) = h3 (w43 h2 (w32 h1(w21 x))) (8.6)

We have training inputs x1 . . . xN and matching training labels t1 . . . tN . Training the network consists
of adjusting the weights such that the output is as close as possible to the labels for the given training data.
We do this by minimising the sum-squared error function:

E(x1 . . . xN ) =
1

2

N∑
i=1

(f(xi)− ti)2 (8.7)

=
1

2

N∑
i=1

(h3 (w43 h2 (w32 h1(w21 x)))− ti)2
(8.8)
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This function can be minimised by gradient descent, if we can compute the gradient. In this case, we
have three parameters, w21, w32 and w43. The derivatives are given by:

∂

∂w43
E(x1 . . . xN ) =

∂

∂w43

1

2

N∑
n=1

(h3(w43 h2(w32 h1(w21 xi)))− ti)2

=

N∑
n=1

(h3(w43 h2(w32 h1(w21 xi)))− ti)︸ ︷︷ ︸
z
(n)
3 −ti

h′3(w43 h2(w32 h1(w21 xi)))︸ ︷︷ ︸
h′
3(a

(n)
3 )

h2(w32 h1(w21 xi))︸ ︷︷ ︸
z
(n)
2

=

N∑
n=1

δ
(n)
3 z

(n)
2 (8.9)

∂

∂w32
E(x1 . . . xN ) =

∂

∂w32

1

2

N∑
n=1

(h3(w43 h2(w32 h1(w21 xi)))− ti)2

=

N∑
n=1

(h3(w43 h2(w32 h1(w21 xi)))− ti)︸ ︷︷ ︸
z3−ti

h′3(w43 h2(w32 h1(w21 xi)))︸ ︷︷ ︸
h′
3(a3)

w43 h
′
2(w32 h1(w21 xi)) h1(w21 xi)︸ ︷︷ ︸

z1

=

N∑
n=1

δ3 w43 h
′
2(w32 h1(w21 xi)) z1

=

N∑
n=1

δ2z1 (8.10)

∂

∂w21
E(x1 . . . xN ) =

N∑
n=1

(h3(w43 h2(w32 h1(w21 xi)))− ti)h′3(w43 h2(w32 h1(w21 xi)))

w43 h
′
2(w32 h1(w21 xi))w32 h

′
1(w21 xi) xi︸︷︷︸

z0

=

N∑
n=1

δ2 w32 h
′
1(w21 xi) z0

=

N∑
n=1

δ1z0 (8.11)

We obtained this result using the chain rule of derivatives, and we can readily distinguish that the
application of the chain rule results in some terms being identical for all derivatives. In fact, we can define
the δ-terms recursively:

δ3 = (z3 − ti)h′3(a3)

δ2 = δ3 w43 h
′
2(a2)

δ1 = δ2 w32 h
′
1(a1) (8.12)

These terms are called the “errors”, which we “back-propagate” through the network. The derivative
of the output error with respect to the weights is obtained by multiplying the back-propagated error with
the corresponding, forward-propagated, network response. Now the interesting thing is that if we make the
network more complex by adding more nodes in any of the layers, the complexity of the backpropagation
algorithm does not increase: all the nodes compute a weighted sum so that, since the derivative of a sum
is the sum of the derivatives, the terms that do not depend on the weight at hand drop away. To illustrate
this, consider the network depicted in Figure 8.4. In this case, the error we want to minimise is the sum of
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w54
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w76

Figure 8.4: A second, slightly more complex neural network. There are two output nodes, with activation
functions h7 and h8, and the hidden layers contain two nodes each.

the errors on the two outputs, so that we want to compute the derivative, with respect to every weight, of

E =
1

2

N∑
n=1

(z
(n)
4 − t(n)

1 )2 + (z
(n)
8 − t(n)

2 )2 (8.13)

where the superscript (n) indicates the value that corresponds to datapoint n.
During forward-propagation, we get

a3 = w31x1 + w32x2 z3 = h3(a3)

a4 = w41x1 + w42x2 z4 = h4(a4)

a5 = w53z3 + w54z4 z5 = h5(a5)

a6 = w63z3 + w64z4 z6 = h6(a6)

a7 = w75z5 + w76z6 y1 = z7 = h7(a7)

a8 = w85z5 + w86z6 y2 = z8 = h8(a8) (8.14)

Using these, we can compute the derivatives of the error with respect to each of the weights as:

∂E(n)

∂w75
= (y

(n)
1 − t(n)

1 )h′7(a7) z5 = δ7 z5

∂E(n)

∂w85
= (y

(n)
2 − t(n)

2 )h′8(a8)z5 = δ8z5

∂E(n)

∂w54
= (z

(n)
8 − t(n)

2 )h′8(a8)w85h
′
5(a5)z4 + (z

(n)
7 − t(n))h′7(a7)w75h

′
5(a5)z4

= (δ8 w85h
′
5(a5) + δ7 w75h

′
5(a5))z4

∂E(n)

∂w31
= (z

(n)
7 − t(n)

1 )h′7(a7)w75 h
′
5(a5)w53 h

′
3(a3) z1

+ (z
(n)
7 − t(n)

1 )h′7(a7)w76 h
′
6(a6)w63 h

′
3(a3) z1

+ (z
(n)
8 − t(n)

2 )h′8(a8)w85 h
′
5(a5)w53 h

′
3(a3) z1

+ (z
(n)
8 − t(n)

2 )h′8(a8)w86 h
′
6(a6)w63 h

′
3(a3) z1

= δ3 z1 (8.15)

Notice how the derivative does not become unmanageably complex. Thus is because the derivative of
a term that is constant with respect to the relevant weight is zero, and because the derivative of a sum
equals the sum of the derivatives. This leads us to define the backpropagation recursively. We introduce the
so-called “errors”, δi, as

δ
(n)
i = h′i(ai)

∑
j

wji δj (8.16)
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Using these, the derivative of the error with respect to a weight wij can be computed as δi zj . The recursive
definition of the errors allows us to compute them in a single pass through the nodes, starting at the
outputs and progressing backwards towards the inputs, hence the name of “Error backpropagation” or
simply “backpropagation”.
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Chapter 9

Gaussian Processes

Where the Dirichlet process used a Dirichlet distribution to specify a discrete probability distribution over
continuous functions, the Gaussian process (GP) provides a continuous distribution over continuous func-
tions. The concept is slightly arcane, but is very elegant and worth understanding. The “bible” of Gaussian
processes is Rasmussen and William’s Rasmussen and Williams [2006], which provides a brilliant overview of
the history, derivations, and practical considerations of Gaussian processes. Gaussian processes have a long
history, and have been well-known in, e.g., meteorology and geostatistics (where GP prediction is known as
“kriging”) for 40 years. A good overview of the use of Gaussian processes for spatial data can be found in
Cressie [1993].

Gaussian Processes have recently been used successfully to extract human pose Ek et al. [2007], a problem
that is known to be strongly multimodal and hence hard to model Ek et al. [2008], and to create complex
models of human motion Wang et al. [2008]. The flexibility of GPs comes from the wide range of kernel
functions that can be used, which makes it possible to model very complex signals, with multiple levels of
superposition. As early as 1969, GPs were used to model the firing patterns of human muscle Clamann
[1969].

The idea of Gaussian processes is to consider a function f(x) as an infinite vector of function values f ,
one for every possible value of x. In this representation, we can define a distribution over the function as a
distribution over this vector, rather than as a distribution over the parameters of some parametrisation of the
function. For the purpose of this explanation, we will consider one-dimensional functions, but the concept
easily extends to multiple dimensions. It turns out that, if we assume that this distribution is Gaussian, it
is actually possible to manipulate such an object in practice, and the resulting distribution is closely related
to a distribution over parametric functions.

The Gaussian process defines the conditional joint distribution of all elements in our infinite-dimensional
vector f as being Gaussian, with some mean and covariance.1 The question, then, is of course how we could
represent such a distribution. The answer relies on two key observations:

1. We only ever need to evaluate a function for a finite number of function values. Figure 9.1 illustrates
this idea by showing a single sample from some Gaussian process. In this case, a 49-dimensional sample
of f(x) is drawn from the process, for a given set of 49 one-dimensional inputs.

2. One of the properties of the multivariate Gaussian distribution is that the marginal distribution of
a subset of its dimensions is again a Gaussian distribution, with mean and covariance the relevant
elements of the original means and covariances. Therefore, the distribution returned by the Gaussian
process over the points where the function is evaluated is the same whether we take all other points
into account or not, as long as we know how our finite set of points covary.

We cannot define a mean vector and covariance matrix over all the points in our function vector, as an
unfortunate side effect of its infinite size, but we can provide a functional description of its mean vector
and covariance matrix conditionally on the input values x at hand. These functions lie at the heart of the
Gaussian process, and define its properties. The capacity to ignore the points where the function is not

1To be more formally exact, it is defines the distribution over any finite subset of the variables in that vector to be Gaussian.
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Figure 9.1: Illustration of a single sample drawn from a Gaussian process

evaluated is what makes Gaussian Processes tractable and, indeed, very efficient for small datasets. The
combination of computational tractability and a formally consistent Bayesian treatment of the model makes
Gaussian processes very appealing.

9.0.1 Gaussian process as Bayesian Linear Regression

Consider standard linear regression with Gaussian noise:

y = f(x) + ε, ε ∼ N (0, σ2) (9.1)

= ϕ(x)>w + ε (9.2)

The target output y is a noisy version of a linear function of the parameters w and the feature representation
ϕ(x) of the input datapoint x. We assume that the output noise is Gaussian, with zero mean and σ2 variance.

We are given a set of training datapoints X, which we represent in a design matrix, Φ, and a set of
targets y. From this, we want to learn to predict the output f(x∗) for a given input x∗. We specify the
design matrix as

Φ ,

ϕ(x1)>

...
ϕ(xN )>

 (9.3)

so that each row contains the features of one datapoint. In the Bayesian framework, we need to introduce
a prior distribution over the parameters w, and choose to use a zero-mean Gaussian prior, with covariance
matrix Σ: w ∼ N (0,Σ). Since both the likelihood p(y|Φ,w) and the prior p(w) are Gaussian, the posterior
p(w|y,Φ) is also Gaussian. Moreover, for a given input value x∗, the predictive distribution over the function
values f(x∗) is given by

p(f(x∗)|x∗,Φ,y) =

∫
p(f(x∗)|x∗,w) p(w|Φ,y) dw (9.4)

This predictive distribution over function values is again Gaussian, and is given by:

p(f(x∗)|x∗,Φ,y) = N (
1

σ2
ϕ(x∗)

>A−1Φy, ϕ(x∗)
>A−1ϕ(x∗)) (9.5)
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where A = 1
σ2 Φ>Φ + Σ−1, and can be rewritten as

p(f(x∗)|x∗,Φ,y) = N (ϕ>∗ Σϕ (ΦΣΦ> + σ2I)−1y,

ϕ>∗ Σϕ∗ − ϕ>∗ ΣΦ>(ΦΣΦ> + σ2I)−1ΦΣϕ∗) (9.6)

where we used ϕ∗ as shorthand for ϕ(x∗). This last form is advantageous when the number of features is
larger than the number of datapoints and, since Σ is positive-definite, we can rewrite the multiplications
of the form ϕ(x)>Σϕ(x′) as ψ(x) · ψ(x′) for some vector of feature functions ψ(x). Notice that ϕ(x) only
occurs in multiplications of that form in Eq. (9.6), so that we can use the kernel trick and fully specify our
predictive distribution with a kernel function k(x,x′) = ψ(x) ·ψ(x′). For every set of feature functions, we
can compute the corresponding kernel function. Moreover, for every kernel function there exists a (possibly
infinite) expansion in feature functions. This infinite expansion is not a problem in a Bayesian framework,
because the (implicit) integration over the parameter values prevent the model from overfitting on the
training data.

The Gaussian process is fully specified by its mean function, µ(x), and its covariance or kernel function
k(x,x′). The functions f(x) are distributed as:

f(x) ∼ GP(µ(x), k(x,x′)) (9.7)

where, by definition, µ(x) , E[f(x)] and k(x,x′) , E[(f(x) − µ(x))(f(x′) − µ(x′))]. In practice, the mean
function is often taken to be zero, for simplicity as much as for symmetry in the function space. This is
not a restriction of the Gaussian process itself, however, and sometimes a non-zero mean function is indeed
specified. Notice that a zero mean does not make the meak of a particular function equal to zero; rather,
for every point in the input space the expectation over the value of all functions at that point, is zero. If we
are given a set of inputs X, a set of targets y and a set of test datapoints X∗, we can directly specify the
covariance matrix of our joint distribution over the function values for the training datapoints and the test
datapoints as [

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
(9.8)

where each element (i, j) of the matrix K(X,X′) , k(xi,x
′
j) for xi being datapoint i in the set X. Using

the standard result for the Gaussian conditional distribution, we can compute

p(f∗|X,y,X∗) = N (µ,Σ), where (9.9)

µ = K(X∗,X)(K(X,X) + σ2I)−1y and (9.10)

Σ = K(X∗,X∗)−K(X∗,X)(K(X,X) + σ2I)−1K(X,X∗) (9.11)

Notice how the mean of the predictive distribution is non-zero, and depends on the training data and
targets. The covariance consists of a term representing the prior covariance of the test datapoints, which is
diminished by a term that depends on the training and test datapoints, and on the noise of the targets; it
does not depend on the value of the training targets. Also notice how the matrix inversion, which dominates
the computational complexity of Eq. (9.10) and Eq. (9.11), does not depend on the test data: it needs only
be computed once. Training a Gaussian process, therefore, consists of: 1) selecting the correct properties of
the function of interest (by selecting the right kernel function,) and 2) computing the said matrix inverse.

9.0.2 Kernel functions

The kernel function fully specifies the (zero-mean) Gaussian process prior. It captures our prior beliefs about
the type of function we are looking at; most importantly, we need to specify beforehand how “smooth” we
believe the underlying function to be. Figure 9.2 illustrates how different kernel function result in different
styles of functions: the plots on the left hand side show samples from the prior, while the corresponding
plots on the right hand side show samples from a GP with the same covariance function, conditional on the
three depicted training datapoints. The kernel functions depicted here are stationary, meaning that they
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Figure 9.2: The kernel function specifies the properties of the modelled function. The plots on the left hand
side show samples from the Gaussian process prior (before we observe any data). The corresponding plots
on the right hand side show samples of the posterior distribution, given the training data (thin lines), as well
as the mean function (thick black line) and two standard deviations around the mean (shaded area). In all
plots the length scale ` was set to one, and r = |x− x′|
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Figure 9.3: Illustration of Gaussian process regression, with one-dimensional input and one-dimensional
output, and three training datapoints

depend solely on the difference between the two input vectors (and are therefore invariant to translations).
Many other kernel functions are possible, including non-stationary ones: the only requirement of a function
for it to be a valid kernel function is that it should be positive semi-definite. Informally, this means that
it must be a function that leads to a positive semi-definite covariance matrix. The easiest way to derive
new kernel functions is to modify known kernel functions using operations which are known to preserve the
positive-semidefiniteness of the function Bishop [2007]

Kernel functions often have parameters. These parameters are not affected by the Gaussian process,
and are part of its specification. One recurrent parameter is the length scale `, which basically sets how
the distance between datapoints affect how the corresponding function outputs covary. The length scale,
therefore, affects how smoothly the function varies. Figure 9.3 shows samples from four different Gaussian
processes, all with squared exponential kernel function and different length scales, illustrating how this
parameter affects the distribution over the functions. A short length scale increases the variance in areas
away from the training data, and consequently also increases the effect of the prior in those areas.

The parameters of the kernel function, also called hyper-parameters, are fixed for a particular GP but
can, of course, themselves be learnt from data. In the Bayesian framework, the way to do this is to place
a prior distribution over the hyperparameters, and to integrate out the hyperparameters. This integral
typically cannot be done analytically, and approximations are then required. When the posterior distri-
bution over the parameters is strongly peaked, one acceptable approximation to the posterior is the Dirac
impulse: the integral then becomes the maximum-likelihood function. Since the posterior distribution over
the hyperparameters is more often strongly peaked than the posterior over the parameters, the values of the
hyperparameters are often found by maximising the marginal likelihood of the training data with respect to
the hyperparameters. Such an optimisation is called type II Maximum Likelihood and, although this proce-
dure re-introduces a risk of overfitting, this risk is far lower than with maximum-likelihood optimisation of
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the parameters.

9.0.3 Classification

Gaussian processes lend themselves very naturally for regression, but can also be used very effectively for
classification. Instead of having an unrestricted function output as in the case of regression, the output of a
two-class classifier is constrained to lie in the range [0 . . . 1], so that it can be interpreted as the probability of
one of the classes given the inputs. This is typically done using a “squashing function”, such as the logistic
sigmoidal:

σ(a) =
1

1 + e−a
(9.12)

For multi-class problems, this can be extended very naturally to the soft-max function.
Training a GP for classification is more involved than for regression, however. Because the output is

pushed through a non-linear function, the posterior distribution is not Gaussian anymore, and the posterior
distribution cannot be derived in closed form anymore. Approximation schemes are therefore required, and
both variational approximation schemes, as well as sampling methods, are routinely used for this.
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Chapter 10

Dimensionality Reduction

10.1 Principal Component Analysis

Principal Component Analysis or PCA is a dimensionality reduction technique based on simple linear pro-
jection: a number of linearly independent vectors are chosen, and the data is projected on those. As we
know, we can project a vector on another vector using the inner product of the two vectors (see chapter 2),
and so the major problem to solve is to decide on how to choose the projection vectors.

When projecting a vector (the datapoint) on another vector (the projection direction), we obtain a scalar.
If we project the datapoint on as many linearly independent vectors as the dimensionality of the original
datapoint, we can use the obtained scalars and the chosen projection directions to reconstruct the datapoint
exactly. If we keep fewer projection directions as we had dimensions originally, then the reconstruction is not
exact. This is illustrated in Figure 10.1: in this case, we have two-dimensional data which we can reconstruct
exactly using two linearly independent basis vectors, or with a reconstruction error by projecting on a single
vector. Which leads us to PCA: different projection directions will result in different reconstruction errors,
as illustrated in Figure 10.2. PCA chooses the projection vectors so as to minimise the sum-squared error
between the original data and the reconstructed data or, equivalently, so as to maximise the variance of the
projected data.

The question then becomes: how can we find the projection directions which maximise the variance of
the projected data? It turns out that these directions can be found efficiently using eigenvector-eigenvalue
decomposition of the covariance matrix of our original data. We can derive this as follows. The function
that we want to maximise is the variance of the projected data, with respect to the projection direction u1,
where u1 is a vector of unit length:

f(u1) =
1

N

N∑
n=1

(u>1 xn − µ)2 , (10.1)

where µ is the mean of the projected data, which is given by

µ =
1

N

N∑
n=1

u>1 xn . (10.2)

We can bring the product out of the sum, so that the mean of the projected data is identical to the projection
of the mean of the original data:

µ = u>1
1

N

N∑
n=1

xn = u1x̄ , (10.3)
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v

e1

e2

p1e1

p2e2

Figure 10.1: Illustration of projection in two dimensions. The vector v is projected on the two linearly
independent unit vectors e1 and e2, resulting in p1 = v>e1 and p2 = v>e2. For each of these projections,
the reconstruction is given by piei. The original vector can be recovered by summing the reconstructions,
v = p1e1 + p2e2

Figure 10.2: Illustration of the reconstruction error with linear projection. In the left graph, the data are
plotted as green dots, the projection direction is indicated by the red arrow and the dashed line, while the
reconstructed data are indicated by the bright red dots. The right graph plots the variance of the projected
data (red) and the total sum-squared error of the reconstructed data (blue)
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where x̄ is the sample mean of the data. Putting this together, we get:

f(u1) =
1

N

N∑
n=1

(u>1 xn − u1x̄)2 (10.4)

=
1

N

N∑
n=1

(u>1 (xn − x̄))2 (10.5)

By introducing a matrix X, where each row n corresponds to the mean-subtracted datapoint xn − x̄, we
obtain the vector of the projections of all datapoints as Xu1, and we can rewrite Eq. (10.5) as:

f(u1) =
1

N
u>1 X>Xu1 (10.6)

= u>1 Su1 (10.7)

where S is the data covariance matrix. Ok. So now we want to maximise this function, subject to the
constraint that u1 is a unit-length vector. We encode this constraint in a Lagrangian function:

L(u1, λ) = u>1 Su1 − λ(u>1 u1 − 1) (10.8)

Taking the first derivative and setting it equal to zero results in:

Su1 = λu1 (10.9)

which is, of course, the definition of an eigenvector-eigenvalue problem. The vectors which maximise our
function f(u1), u1 are eigenvectors of the data covariance matrix S, with corresponding eigenvalue λ. Large
eigenvalues correspond to large variance, so we select the eigenvectors with the largest eigenvalues.

10.1.1 PCA with very high-dimensional data

When the data is very high-dimensional, the covariance matrix S becomes impossible to work with. For
example, consider working with images of 256× 256 pixels: each image is then a vector with 65k elements,
and the covariance matrix is a 65k×65k matrix. Such a matrix requires 48GB to simply store (using double
precision floating point variables), which is not realistic on most current hardware. However, in practice we
rarely have enormous amounts of high-dimensional data. For PCA of images of faces (so-called eigenfaces),
for example, some 300 faces seem to span the complete space of human faces quite well. In such cases, we
can do better than computing the complete covariance matrix. Indeed, we know that in a d-dimensional
space, two datapoints will define exactly one single line that goes through both: this is also the line which,
when used for projection, results in zero reconstruction error. Projecting these two datapoints on any vector
which is orthogonal to this line will result in both points having the same projection, so that the variance of
the projected data will be zero. If we have three datapoints, we span a plane and therefore two vectors, and
so on: we always have, for N datapoints (of dimensionality d larger than N), at most N − 1 vectors with
non-zero variance of the projected data, N − 1 eigenvectors with non-zero corresponding eigenvalue. As a
consequence, we’re allowed to do the following: instead of considering the eigenvalue decomposition of the
covariance matrix

1

N
X>Xu1 = λu1 , (10.10)

we consider the eigenvalue decomposition of another, related, matrix

1

N
XX>v1 = νv1 , (10.11)

Notice that if this latter eigenvalue decomposition is easier than the previous one, as long as we have fewer
datapoints than dimensions. In our previous example, the matrix X>X would be a 65k× 65k matrix, while

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


104 Dimensionality Reduction

zn
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Figure 10.3: Graphical model of probabilistic PCA

XX> would be a 300× 300 matrix, which is vastly easier to work with. So what is the relationship between
these two matrices? Well, if we take Eq. (10.11) and pre-multiply both sides by X>, we get:

1

N
X>XX>v1 = νX>v1 , (10.12)

so that, by setting u = X>v1, we recover our original eigenvalue decomposition of the covariance matrix. In
other words, if v1 is an eigenvector of XX>, then X>v1 is an eigenvector of X>X. Doing this eigenvector
decomposition and subsequent matrix multiplication is a lot cheaper than directly doing the eigenvector
decomposition of covariance matrix.

Practical side note Notice that in the eigenvalues of the two matrices are not the same, and that if v1

is a unit-length vector, X>v! is (most likely) not. When using this technique, remember to normalise the
computed eigenvectors: u1 = u/||u||2.

10.2 Probabilistic PCA

Instead of considering PCA as a deterministic algorithm for finding projection directions which minimise
the reconstruction error, we can instead consider it as a generative probabilistic algorithm. This means that
we consider the low-dimensional projection of the data to be some hidden, continuous random variable z
with some distribution, while the original data is an observed random variable x which depends on z. PCA
defined the low-dimensional representation to be the projection of the (mean-subtracted) high-dimensional
data on a limited number of projection vectors: in other words, we could reconstruct the original mean
subtracted data (approximately) by scaling the projection vectors by the resulting projections and summing
these (as explained in Figure 10.1):

x− µ = z1u1 + · · ·+ zkuk (10.13)

which we can write as a matrix product

x = Wz + µ (10.14)

where we introduced the matrix W whose columns contain the projection vectors,

W =
[
u1 · · · uk

]
(10.15)

Now PCA was defined as minimising the sum-squared error between the original data and the recon-
struction which, as we’ve seen before, is equivalent with maximising the probability of the data under the
assumption that the noise has a Gaussian distribution with zero mean and spherical covariance:

p(x|z) = N (x; Wz + µ, σ2I) (10.16)
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Now we still need to specify a prior distribution over the latent variables z, to ensure that our model is not
underspecified. If we did not do this, we could scale our projections z by any constant, and scale W by
the inverse of that constant, to obtain the exact same reconstructions. We specify that z must be normally
distributed, with zero mean and unit covariance:

p(z) = N (z; 0, I) (10.17)

The corresponding graphical model is depicted in Figure 10.3. With this model, we can optimise the free
parameters to maximise the probability of the data. The maximum-likelihood estimate of the mean, µ, is
the sample mean of the data, while the projection matrix W and the data variance σ can be optimised
by gradient descent. This has the downside of not finding the optimal value of the parameters in closed
form (that is, it can take a few iterations and does not find the exact optimum) but means that no matrix
inversion is required. For large, high-dimensional datasets, where standard PCA is not possible in practice,
probabilistic PCA is a solution.

10.3 More to come. . .

There are more things I want to talk about here, including factor analysis, ICA and different forms of
non-linear dimensionality reduction.

10.3.1 t-distributed Stochastic Neighbour Embedding

One technique that is very useful for visualising data in two or three dimensions is t-distributed stochas-
tic neighbour embedding or t-SNE. This technique is similar to LLE, in that it attempts to preserve the
neighbourhood relationships in the original high-dimensional space as best as possible in the low-dimensional
space
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Chapter 11

Sampling

When working with probabilistic models, there is one main issue that comes back over and over again:
integration. Whether it be to compute the marginal probability of some variables, conditional probabilies or
the expected value of some function, all of these require the computation of an integral. When variables are
discrete, this integration becomes a sum over all possible values of the variables and in the case of continuous
variables, the integrals can sometimes be computed in closed form. Most often, however, this will not be
possible and tractable approximations are then required.

In chapter 6 subsection 6.3.2, we have seen algorithms that leverage the factorisation of the joint distribu-
tion of different variables to minimise the number of integrations required to compute a marginal probability.
In this chapter, we see how we can approximate the integration process itself.

11.1 Numerical integration

The general form of the problem we want to solve is therefore of the form

E[f(x)] =

∫
f(x) p(x)dx (11.1)

where for discrete variables the integral is replaced by a sum. The function f(x) can be any function. For
example, if the x-axis represents the size of the tomatoes you’re growing on your balcony, the function may
represent the price you can ask for the different tomato sizes should you choose to sell them. The expectation
(under the probability distribution over tomato sizes) of this function would then be how much money you
would expect to get from growing and selling tomatoes. If we are interested in computing the marginal
distribution p(z) from the joint distribution p(x, z), this expectation becomes

p(z) =

∫
p(x, z)dx =

∫
p(z|x) p(x)dx = E[p(z|x)] (11.2)

Figure 11.1: Illustration of numerical integration using the midpoint (rectangle) rule, where the area under
the original function (red curve) is approximated by the sum of the areas covered by the rectangles.
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Figure 11.2: Illustration of how sampling approximates the area under the PDF. Notice that this is only an
illustration, in that in this figure the boxes are located so as to have an area of exactly one Nth (samples,
in contrast, are stochastic) and that the PDF is of infinite extent (the area of the leftmost and rightmost
boxes corresponds to the area under the curve between infinity and the boundary of the next box).

where f(x) = p(z|x) is a conditional PDF. We focus, therefore, on the general case of the computation of
an expectation.

If our integral cannot be solved in closed form and is definite (i.e., between known bounds), an obvious
solution might be to perform numerical integration using interpolation, as illustrated in Figure 11.1. Yet
this solution has many disadvantages: (1) it requires a definite integral, while the domain of most PDF
is unbounded; (2) it does not scale to multiple dimensions (as the number of required hypercubes grows
exponentially with the number of dimensions), and (3) the computation of the area of each rectangle requires
the same amount of resources, while some rectangles contribute a lot to the end result and others have a
negligible contribution.

This leads us to the idea of sampling. Imagine that we had a number N of values xi in the domain of a
function g(x) = f(x) p(x), such that the number of such values in the interval x + dx was proportional to
p(x). Then since the probability density p(x) cannot be negative and is normalised, we could approximate
the proportion of the area under g(x) numerically as∫

g(x)dx ≈ 1

N

N∑
i=1

f(xi) (11.3)

Instead of computing the function “everywhere” (i.e., at uniform intervals between the bounds of the
integral), we can simply evaluate it at a finite number of locations (even if the integral is indefinite), to
obtain an approximation to the desired integral. This works, because we know that the total area under the
curve must add up to one, so that each of the N samples are associated with one Nth of the area. In effect,
instead of splitting the domain of the PDF into segments of equal width1 — with different corresponding
areas under the curve — we instead split it up into segments of different width, but with the same area
under the curve. This is illustrated in Figure 11.2.

11.1.1 An example

As an example illustrating what sampling is, why it’s useful and how to use it, let us consider the following
situation. Let us consider that the function we are computing the expectation of is the benefit, measured
in marks on the exam, of your reading my lecture notes. This benefit depends on when you read the notes:
if you start reading them from the start of the course, you get the time to process the material and benefit
most. If you start later, you still benefit from them — for these notes truly are excellent — but you have
less time to process the material and therefore benefit less. However, as the exam gets near, reading the
notes yields renewed benefit, because although you haven’t got time to process it all, at least it’s all fresh in
your memory and you can find the information you need fast (the exam is open-book).

So now, I’d like to know whether writing these notes is worth the effort. This depends on when you
start reading them, so the answer to my question depends on the probability distribution, over time, of your

1Width in one dimension, area in two, etc.
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Figure 11.3: An artificial example to illustrate the use of sampling. In the bottom axis, we have time. The
red function indicates the probability that you will start reading the lecture notes, at any time over the
duration of the course. The blue function is the amount of benefit that you will get from reading the notes
in function of time: if you read them at the start of the course, you benefit most. If you read them during
the course you benefit less, but if you read them right before the exam, your benefit increases slightly. The
question now is: as the author of these notes, how much can I expect you to benefit from them (and is it
worth my time writing them)? The expectation is hard to compute analytically, due to the complex form of
the PDF, but we can compute it by sampling. The result is indicated by the horizontal green line.

z

y
=
f

(z
)

Figure 11.4: Transforming variables through a nonlinear function results in a changed probability density
for the transformed variable.

reading my notes. This is plotted in Figure 11.3: the benefit of reading the notes evolves over time as the
blue curve, the probability of your reading them at some point in time is indicated by the red curve (this
is a complex function with local optima around the time of the actual lectures). The computation of the
expectation of the benefit is indicated by the green line, which was computed numerically.

11.2 Basic sampling algorithms

The question now is how to get such “sample points” such that the number of points in a region is propor-
tional to the probability of that region. When transforming continuous variables, the probability density is
transformed by the determinant of the Jacobian. This can be seen intuitively for one-dimensional variables,
as illustrated in Figure 11.4: we want that for any value of the original variable x, the probability of falling
in an infinitesimally small region around x be the same as falling in an infinitesimally region around the
corresponding y = f(x) in the transformed space. Therefore, we have

p(y)δy ' p(x)δx (11.4)

In the limit for infinitesimally small regions, we get

p(y) = p(x)

∣∣∣∣dxdy
∣∣∣∣ . (11.5)
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Figure 11.5: Transforming uniformly distributed samples in the interval [0, 1] by the inverse CDF of the
desired PDF results in samples with the desired distribution. See text for more details.

As an aside, notice that this only holds as long as the function is bijective (maps each value of x to one
and only one value of y, and vice versa), but this can be extended by summing over sections of the function
which are bijective. This is not an issue in our case, however. If we integrate both sides of the equation, we
get ∫ y

−∞
p(y′)dy′ = p(x)x (11.6)

If we take x to have a uniform distribution in the range [0, 1], then p(x) = 1 for all values of x, so that
x = h(y), the cumulative distribution function (CDF) of y. We can therefore transform a sample by the
inverse CDF, y = h−1(x), to obtain samples y with the desired density function.

This is illustrated in Figure 11.5

11.3 Rejection Sampling

Rejection sampling is a method to generate samples from an unnormalised probability density function. The
idea is as follows. Imagine that we should have a function that describes the distribution of a variable of
interest, but our function is not a proper PDF because we do not know the normalisation constant that
would make the area under the curve equal to one. Such functions are very common, for example, in Markov
Random Fields (section 6.2), where the use of potential functions makes the computation of the normalisation
constant exponential in the number of variables. Let us call this function p̃(x), such that

p(x) =
1

Z
p̃(x) (11.7)

This function p̃(x) is depicted by a red line in Figure 11.6.
We can then devise a scheme to generate samples from the distribution p(x) by taking any other dis-

tribution q(x) from which we know how to sample, for example by transforming uniform samples using the
basic sampling algorithm described above. We now find a constant k, such that kq(x) ≤ p̃(x) for all x.

We first sample from q(x), and for each of the generated samples x, we generate a uniformly distributed
sample u in the range [0, kq(x)]. If the sample u > p̃(x), we reject the sample, otherwise we accept it and
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Figure 11.6: Illustration of rejection sampling

keep a sample z = x. The probability of a sample z is then given by

p(z) = q(x) p(z|x) (11.8)

= q(x)
p̃(x)

kq(x)
(11.9)

=
Z

k
p(x) (11.10)

so that p(z) ∝ p(x): the distribution of z is the same as the distribution of x, and the probability of a sample
z is the probability of x multiplied by the probability that it should be rejected uselessly. If Z = k, then
p(z) = p(x) and no samples are rejected. This is only possible if p(x) = q(x), as we must scale q(x) to be as
least p(x) for any value of x. Notice how the value of k affects the efficiency of the algorithm: the larger k,
the lower the probability that a sample gets accepted.

This problem gets exacerbated in higher dimensions. TODO: link back to intuitions about high-dimensional
spaces.

11.3.1 Adaptive Rejection Sampling

A clear problem with rejection sampling is that we need to keep k as small as possible, but that finding
the minimum of k for which k q(x) ≥ p̃(x) is not always analytically possible. For distributions which are
log-concave, a different approach can be used: instead of finding a fixed upper bound for the density that
we want to sample from, we iteratively refine an upper bound while sampling. This works as follows: the
(possibly unnormalised) log-probability function ln p̃(x) is bounded by piecewise linear segments, initially
computed by the derivative to ln p̃(x) in a number of locations. These linear segments in log-probability
result in exponential distributions in probability space, as illustrated in Figure 11.7. Rejection sampling
is used with this proposal distribution, and whenever a sample gets rejected, the point is added to the set
of centres where the proposal distribution is tight with p̃(x). As a result, the proposal distribution will
approximate the real distribution better, and the number of rejections diminishes as the number of samples
increases.

11.4 Importance Sampling

Rejection sampling compensates for the difference between the proposal distribution q(x) and the real distri-
bution p(x) through an extra sampling step which rejects samples proportionally to the difference between
the distributions. As a consequence, there are, in a sense, two approximations: we approximate the distri-
bution q(x) by sampling, and approximate the difference between p(x) and q(x) by sampling again. Instead,
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Figure 11.7: Illustration of how a log-concave distribution can be iteratively approximated by piecewise
log-linear (exponential) distributions
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Figure 11.8: Illustration of Markov Chain Monte Carlo sampling with the Metropolis algorithm, where the
desired distribution is a multivariate Gaussian with full covariance matrix, and the proposal distribution is
a spherical Gaussian distribution. The connections between the samples show the order in which they were
proposed; blue samples were accepted while red samples were rejected.

it is possible to replace the second sampling step by a weight. The expectation that we compute can be
approximated as:

E[f ] ' 1

L

L∑
l=1

p(z(l))

q(z(l))
f(z(l)) (11.11)

Doing so has two advantages: (1) we don’t need to find a constant k by which to scale the proposal distri-
bution, and (2) the weights are an exact correction for the difference between the proposal distribution and
the target distribution, that rejection sampling approximates by sampling. On the other hand, importance
sampling may cause problems which are hard to diagnose: if our proposal distribution is very different from
our target distribution, we will obtain many sample with very low weight (and probably no samples with
a large weight). Our estimated expectation will therefore be very different from the true expectation. In
contrast, in the same situation rejection sampling would basically reject all samples.

11.5 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are sampling methods where the proposal distribution q(z)
forms a Markov chain, so that the next proposal depends on the previous sample. As a result, samples are
not independent so that we need many more samples to obtain a good estimate of our distribution. However,
the effectiveness of the sampling method does not decrease with the dimensionality of the space, so that
MCMC methods are actually useful in many practical applications, where we have multiple variables, and
where basic sampling algorithms are not applicable.

Let us create a Markov chain of samples, where the probability of the next sample given the previous
sample is given by q(zt|zt−1). We are interested in the overall distribution of the samples, p(z1:T ), and we
want this distribution to remain constant as we get more samples. As usual, we may not be able to represent
this distribution, but we do need to be able to compute it up to an unknown normalisation constant for any
value of z. Similarly to rejection sampling, we will accept or reject the samples obtained from the proposal
distribution q(zt|zt−1) according to a criterion that will make the overall distribution of the accepted samples
converge to our desired distribution p(z).

11.5.1 The Metropolis Algorithm

The Metropolis algorithm is such a sampling algorithm. It assumes that the proposal distribution is sym-
metric — that is, q(z|z′) = q(z′|z) — and that q(z|z′) 6= 0 for all z and z′. Based on these assumptions,
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Figure 11.9: Animation illustrating how MCMC sampling explores the sample space. We start at a random
location, indicated by the dark red dot. We then sample from the proposal distribution, and if the ratio
between the new sample and the old sample is larger than one (indicated by a green arrow bar), we accept
the sample unconditionally. If the ratio is smaller than one (indicated by a split red/green bar), we generate
a uniform sample in the range (0. . . 1), and accept the proposed sample if the value of the uniform sample
falls below the computed ratio.

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


11.5 Markov Chain Monte Carlo 115

we can design a scheme for accepting samples from the proposal distribution where we accept a proposed
sample z∗ with probability

A(z∗|zt−1) = min

(
1,

p̃(z∗)

p̃(zt−1)

)
. (11.12)

That is, we always accept a sample if the probability of the proposed sample is higher than the probability
of the previous sample, and only accept it with probability equal to the ratio between the probabilities of
the new and the old sample if it’s lower. This is crucial, as it means that we don’t just find the areas with
highest probability, but also that we end up in areas of lower probability (proportionally to the density in
those areas). Importantly, if the sample is not accepted, it is not simply rejected: instead, a new sample zt
with the value of the previous sample zt−1 is created. This is illustrated in Figure 11.9, where the radius of
the dot depicting each sample indicates how often the sample is included in the chain.

We can see that, using this scheme, the chain will be invariant, meaning that if the probability distribution
of the samples is p(z), sampling further from the chain will result in new samples with the same distribu-
tion p(z). The way to see this is that our Markov chain exhibits detailed balance: p(z) q(z′|z)A(z′|z) =
p(z′) q(z|z′)A(z|z′). This is easy to prove, since

p(z) q(z′|z) min

(
1,
p(z′)

p(z)

)
= min

(
p(z) q(z′|z),

p(z′) p(z) q(z′|z)

p(z)

)
(11.13)

= min (p(z) q(z′|z), p(z′) q(z′|z)) (11.14)

= min (p(z) q(z′|z), p(z′) q(z|z′)) (11.15)

= p(z′) q(z|z′) min

(
p(z)

p(z′)
, 1

)
(11.16)

In this derivation, we used normalised probabilities p(z) instead of the unnormalised versions used in

Eq. (11.12), which we can do since the normalisation constant is, by definition, a constant, so that p̃(z)
p̃(z′) =

p(z)
p(z′) . Detailed balance ensures that the Markov chain is invariant:∑

z

p(z) q(z′|z)A(z′|z) =
∑
z

p(z′) q(z|z′)A(z|z′) = p(z′)
∑
z

q(z|z′)A(z|z′)︸ ︷︷ ︸
=1

= p(z′) (11.17)

Of course, just because our Markov chain is invariant once it has reached the desired distribution does not
mean that it will converge to that distribution from any initialisation. This is where our second assumption
— that the proposal distribution be non-zero for every z, z′ — comes into play, as it ensures that as the
number of samples n approaches infinity, the distribution of the samples approaches the desired distribution
Neal [1993].2

11.5.2 The Metropolis-Hastings algorithm

The Metropolis algorithm can be relaxed such that the proposal distribution need not be symmetric, by
adjusting the probability so as to compensate for the asymmetry of the proposal distribution. The modified
acceptance probability is given by

A(z|z′) = min

(
1,
p̃(z) q(z′|z)

p̃(z′) q(z|z′)

)
(11.18)

It is easy to show that the Markov chain exhibits detailed balance, without the symmetry constraint of the
Metropolis algorithm. Notice, however, that the rejection rate is different, so that both sampling algorithms
are not necessarily equally efficient.

2In fact, the constraint is a little looser than described here: it is sufficient for the proposal distribution q(z|z′) to be nonzero
for any value z for which p(z) is nonzero.
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Figure 11.10: Illustration of Gibbs sampling. We sample each dimension in turn, from the conditional
distribution over that dimension, given all other dimensions. In the animation, this is indicated by the grey
line (which really should be drawn in three dimensions, of course). All samples are kept, see text for details.

11.5.3 Gibbs sampling

The Metropolis-Hastings algorithm can be applied to a particular form of sampling, where the proposal
distribution is given by the conditional distribution of one dimension zi of the variable given all other
dimensions, p(zi|z¬i), under the distribution we are sampling from. If this conditional distribution can be
computed (up to a normalisation constant) and sampled from, we obtain a very effective sampling scheme,
since the acceptance probability of the Metropolis-Hastings algorithm becomes one:

p(z) p(z′i|z¬i)
p(z′) p(zi|z′¬i

)
=
p(zi) p(z¬i) p(z

′
i|z¬i)

p(z′i) p(z
′
¬i) p(zi|z′¬i

)
(11.19)

=
p(zi|z′¬i) p(z¬i) p(z′i|z¬i)
p(z′i|z′¬i) p(z′¬i) p(zi|z′¬i

)
(11.20)

= 1 since z¬i = z′¬i (11.21)

11.5.4 MCMC in practice

MCMC sampling has a few particularities when compared to the other sampling algorithms that we’ve seen.
These need to be taken into account in any practical implementation.

1. Although the chain is guaranteed to converge to the desired distribution, the initial samples of the chain
can have a very different distribution, especially if the chain is started in a low-probability region. In
practice, it is therefore important to have a burn-in period of samples that are discarded.

2. It is typically not necessary to store the samples. If we are computing an expectation, we just keep the
sum of the function values for each sample that is used, and discard the samples themselves. If we do
need to keep the samples, in the case of the Metropolis and Metropolis-Hastings algorithms, it is often
advantageous to store samples and counts representing how often a sample is used (due to rejections),
rather than to keep duplicate samples.
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3. Especially in the case of Gibbs sampling, if different dimensions of our probability distribution are
strongly correlated, the sampling scheme becomes very inefficient. Consider the case of a 2D Gaussian
distribution with strong correlations between the dimensions: in this case, Gibbs sampling will result
in extremely steps being taken, and it will take very many samples to move from one end of the
distribution to the other.

4. If our probability distribution is multi-modal (it has multiple maxima) separated by areas of very low
probability, it will be very unlikely for the chain to transition from one area of high probability to the
other. One area will be well explored, and the samples will seem to have give a good representation of
the distribution, but in reality their distribution will be very different from the distribution we want
to obtain. This is a real problem that has no good general solution, but multiple starts from random
initialisations can at least indicate whether this is happening.

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


118 Sampling

Copyright 2010—2018 by G. Englebienne

http://gwenn.dk/mlpr/mlpr-notes.pdf


Appendix A

Lagrange multipliers

This text represents my attempt at explaining Lagrange multipliers. It is largely based on Bishop’s book
Pattern Recognition and Machine Learning but endeavours to make things short and easily understood by
means of illustrative examples.

Consider a multivariate function that we would like to optimise. In machine learning, such a function
will typically be some objective function of the data. For example, we may want to optimise the parameters
of a probability density function (PDF) representing the distribution of the data. Often, we do not simply
want to find the maximum of the function, but we also want to apply some constraints. For example, in
the case of parameter optimisation of a PDF, we will want to ensure that the rules of probabilities are not
violated.

In this explanation, we consider only a 2D case to help visualisation, but of course the technique is more
widely applicable to higher-dimensional cases.

A.1 The function

Consider a two-dimensional feature space. The two features, x1 and x2 form the domain of the function we
want to optimise. In this case, let us consider the function

f(x) = exp(−x>x) (A.1)

which is shown in Figure A.1. Remember that the third dimension in this figure is not part of the domain
of the function. It should rather be considered as a property of the input space and it is, therefore, perhaps
more intuitive to consider the function as a colouring of the input space rather than as a third dimension:
this is shown in the right-hand plot of Figure A.1.

In this latter figure, the gradient of the function, ∇f(x), is also depicted in the form of a vectorfield.
Following the gradient in the input space will lead us to increasing values of f(x). This is, of course,
important when we want to find the optimum of f(x). We will see in a minute that it is also important to
find the constrained optimum of the function.

A.2 The constraint

The constraint we want to impose must be of the form g(x) = 0. It imposes a relationship between the
dimensions of the input space, so that one degree of freedom is taken away: if we know n − 1 dimensions,
we can compute the nth dimension using the constraint function. The constraint, therefore, defines an
(n− 1)-dimensional manifold in the n-dimensional input space.

Let us, in this 2D case, consider the 1D manifold given by the constraint x1 = 1/x2. In the form g(x) = 0,
this becomes:

x1x2 − 1 = 0 (A.2)
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Figure A.1: Plot of the function f(x) to be optimised

This function defines a line in our two-dimensional space, shown in dark red in Figure A.2. The value of
g(x) is represented by the colour intensity in this figure, so that a lighter colour indicates a higher value. If
we look at the gradient of this function (shown by black arrows in the same figure), we see that it is always
perpendicular to the line g(x) = 0. It must be, of course, since it indicates in which direction to go in order
to increase g(x), and our line is defined as g(x) equal to a constant.

Now we want to find the maximum of the function f(x) on the manifold defined by g(x) = 0. At the
location of that maximum, that the gradient of f(x) must be perpendicular to the manifold g(x) = 0. We
can see that this is the case, because if the gradient wasn’t perpendicular, we could project it on the manifold
g(x) = 0 and follow that projection to get to a higher point (if we were looking for a maximum, or go in
the opposite direction to get to a lower point, if we were looking for a minimum). The original point where
the gradient is not perpendicular to the manifold cannot, therefore, be an optimum. As a consequence, the
gradient of f(x) and the gradient of g(x) must be parallel to each other at the location of the optimum, as
illustrated in Figure A.3.

A.3 Finding the constrained optimum

We must find a point where the gradients of f(x) and g(x) are parallel (but can be of different length, and
different sign), which we can express as follows:

∇f(x) + λ∇g(x) = 0, (A.3)

where λ is a scalar constant. We now have a system with D + 1 unknowns (the D dimensions of x, and λ).
For convenience, we can introduce the following function called the Lagrangian:

f(x) + λg(x) (A.4)

Taking the first derivative of the Lagrangian with respect to each of the elements of x and setting the
resulting quantities equal to zero, results in D equations. Doing the same with respect to λ results in our
original constraint g(x) = 0, so that we have D + 1 equations with D + 1 unknowns.
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Figure A.2: Constraint function g(x). The left plot depicts the function as an extra dimension, while the
right plot uses colour intensity to indicate the function’s value. The dark red line is defined by x1x2− 1 = 0
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Figure A.3: Gradient of the function f(x) to be optimised (blue) and gradient the constraint function g(x)
(green). g(x) = 0 is shown by the dark red line.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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A.3.1 Worked out example

In the case of the problem we used throughout this explanation, we have the following function and constraint:

f(x) = exp(−x>x) (A.5)

g(x) = x1x2 − 1 = 0 (A.6)

The Lagrangian L is therefore given by:

L = exp(−x>x) + λ(x1x2 − 1). (A.7)

= exp(−x1x1 − x2x2) + λ(x1x2 − 1) (A.8)

Taking the partial derivatives and setting them equal to zero results in the following set of equations:
∂L
∂x1

= 2 exp(−x>x)(−x1) + λx2 = 0 (A)
∂L
∂x2

= 2 exp(−x>x)(−x2) + λx1 = 0 (B)
∂L
∂λ = x1x2 − 1 = 0 (C)

(A.9)

So all that’s left to do is to solve this set of equations for x1 and x2, to find the value of x on g(x) = 0
for which f(x) is maximal. In this case, we can do this by solving (A) and (B) for λ, resulting in:

λ = 2 exp(x>x)
x1

x2
(A.10)

λ = 2 exp(x>x)
x2

x1
(A.11)

From this, we get that

x1

x2
=
x2

x1
(A.12)

x2
1 = x2

2 (A.13)

x1 = ±x2 (A.14)

However, the solution x1 = −x2 violates our constraint (C), so that it is discarded. If x1 = x2, we get that

x2
1 = 1 (A.15)

x1 = x2 = ±1, (A.16)

and our function is maximal at both (1, 1)> and (−1,−1)>, as indicated by the red dots in Figure A.4.

A.4 Inequality constraints

It is sometimes necessary to impose inequality constraints rather than equality constraints, i.e., constraints
in the form g(x) > 0. In this case, our problem falls into two possible categories: either g(x) > 0, or g(x) = 0.
If g(x) > 0, we find that the maximum of f(x) falls in a region where g(x) is larger than zero. In other
words, we must simply find the maximum of f(x) (where ∇f(x) = 0, and the constraint does not affect the
result: the constraint is then said to be inactive. If g(x) = 0, we need to solve the same problem as described
above; the constraint is then said to be active.

Notice that in the case where the constraint is inactive, this also correspond to a stationary point in the
Lagrangian function; where λ = 0. If the constraint is active, the gradients of f(x) and g(x) are non-zero-
length parallel vectors, so that λ must be non-zero. In both cases, therefore, λg(x) = 0. The direction of
the gradients is now important, however, because the constraint will only be active if the gradients have
opposite signs, as can easily be seen in the 2D case illustrated in Figure A.3. We can therefore optimise the
function with inequality constraints by optimising the Lagrangian function, subject to the constraints

g(x) > 0

λ > 0

λg(x) = 0

(A.17)

These are known as the Karush-Kuhn-Tucker conditions.
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Figure A.4: Maximum of exp(x>x) subject to x1x2 = 1

A.4.1 Worked-out example

Inactive constraint

Let’s start with an example where the constraint is inactive. Consider the same function f(x) as before, this
time with the constraint

−x1x2 + 1 > 0. (A.18)

This is the negative of our previous constraint function. Equality is obtained for this function for the same
values of x1 and x2 as before, but the gradient is reversed. Solving the Lagrangian L = exp(−x>x) + λ(1−
x1x2) subject to the KKT conditions gives us:

2 exp(−x>x)(−x1)− λx2 = 0 (A)

2 exp(−x>x)(−x2)− λx1 = 0 (B)

1− x1x2 > 0 (C)

λ > 0 (D)

λ(1− x1x2) = 0 (E)

(A.19)

From (A) and (B) we get again that x1 = ±x2. From (E) we get that if λ is non-zero, x1 = x2 = ±1.
However filling x1 = x2 in (A) results in λ = − exp(x>x), which must be negative and therefore violates
(D). Therefore λ must be zero, and we get from (A) and (B) that, for non-infinite values of x1 and x2 (as
these would violate (C),) x1 = x2 = 0. This is illustrated in Figure A.5

Active constraint

Another example, where the constraint is active, would be the following:

f(x) = exp(−x>x) (A.20)

g(x) = x1x2 − 1 > 0 (A.21)
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−2 −1 0 1 2
x1

−2

−1

0
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x2

Figure A.5: Maximum of exp(x>x) subject to −x1x2 +1 > 0. In this illustration, the shaded area represents
where the inequality constraint is fulfilled and the red dot indicates the constrained maximum of the function.

In this case, the conditions become:

2 exp(−x>x)(−x1) + λx2 = 0 (A)

2 exp(−x>x)(−x2) + λx1 = 0 (B)

x1x2 − 1 > 0 (C)

λ > 0 (D)

λ(x1x2 − 1) = 0 (E)

(A.22)

If we assume that the constraint is inactive, we get from (A) and (B) that x1 = x2 = 0, which violates C,
or x1 = x2 = ∞, which violates (E). Therefore the constraint must be active, so that we fall in the same
situation as exposed before for the equality constraints and obtain two constrained maxima: (−1,−1) and
(1, 1). The result is illustrated in Figure A.6.
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Figure A.6: Maximum of exp(x>x) subject to x1x2 − 1 > 0. In this illustration, the shaded area represents
where the inequality constraint is fulfilled and the red dot indicates the maximum of the function.
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Appendix B

Probability distributions

B.1 Bernoulli distribution

The Bernoulli distribution can be used to represent the probability of a single, binary event x ∈ {0, 1}. It
has a single parameter, µ, which lies in the interval [0, 1]. The probability of an event being one is given by

p(x|µ) = µx(1− µ)(1−x) (B.1)

E[x] =
∑

x∈{0,1}

x p(x) (B.2)

= 1.µ1 + 0.(1− µ)0 (B.3)

= µ (B.4)

B.2 Beta distribution

Blah. See Figure B.1

Beta(x; a, b) =
Γ(a+ b)

Γ(a) + Γ(b)
xa−1(1− x)b−1 (B.5)

The posterior distribution of µ, after seeing a− 1 positive examples and b− 1 negative examples. It is is,
therefore, the conjugate prior for the parameter of the Bernoulli distribution.

a = 1, b = 1

a = 1, b
= 2a =

3,
b =

2a
=

3,
b

=
3

0 0.5 1
0

1

2

Figure B.1: Plot of the Beta distribution
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N (0, 1)

N (0, 4)

−5 0 5
x

0

0.25

0.5

p(
x
)

Figure B.2: Plot of the Gaussian distribution in one and two dimensions

Σ =

[
2 0
0 4

]
Σ =

[
4 3
3 4

]
Figure B.3: Plot of 2-dimensional Gaussian distributions

B.3 Binomial distribution

B.4 Gaussian distribution
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Appendix C

Dealing with products of many
probabilities

One issue that is often encountered when implementing probabilistic models, is that the numbers we deal
with become very small. If we have a thousand independent variables, their joint probability is given by the
product of their individual probabilities. If each variable should have a probability p(xn) = 0.1, their joint
probability p(x1, . . . , xn) = 0.11000 could not be represented as a double-precision floating point variable.
Such collections of variables are two a penny,1 especially when dealing with sequential data, and special care
must then be taken to minimise numerical errors.

Two solutions are common: (1) rescale your probabilities periodically or (2) work with log-probabilities
rather than probabilities. The first solution is often applied to sequential models such as HMM, but it
requires extra bookkeeping work and is prone to errors. In this chapter, we expose how to work with the
logarithm of probabilities instead.

C.1 Using log-probabilities

Probabilities (and probability densities) are, by definition constrained to lie in the interval [0, 1]. The natural
logarithm of these quantities therefore lie in the interval [−∞, 0]. This gives our computer a much larger
dynamic range to work with, and drastically reduces the effect of numerical errors. When dealing with
probabilities, three different operations are common: the product of two probabilities (to compute joint
probabilities), the quotient of two probabilities (to compute conditional probabilities using Bayes’ rule), and
the sum of two probabilities (to marginalise out variables).

The product and quotient of probabilities is easily computed using log-probabilities, since log(p(x) ×
p(y)) = log p(x) + log p(y) and log(p(x)/p(y)) = log p(x)− log p(y).

The sum of probabilities is a bit harder to deal with, but can be solved as follows. We want to compute
log
(
p(x) + p(y)

)
, when given log p(x) and log p(y). This can decompose this as follows:

log(p(x) + p(y)) = log(exp log p(x) + exp log p(y))

= log(exp log p(x)(1 +
exp log p(y)

exp log p(x)
))

= log p(x) + log(1 + exp(log p(y)− log p(x))) (C.1)

Now, let us have a closer look at the function log(1 + exp(x)), depicted in Figure C.1: when x is a large
negative number, it tends to zero, and when x is large it tends to x. In practice, using double-precision
arithmetic, for x 6 −44, the difference between log(1 + ex) and 0 is smaller than machine precision, and for
x > 44 the difference between log(1 + ex) and x is smaller than machine precision. In practice, the function
only needs to be evaluated within that small range around zero.

1They occur often. Apparently, inhabitants of the US would use the expression “a dime a dozen” instead which, as McKay
points out, does not leave much room for fluctuation in the exchange rate between pounds and dollars.
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y = x

y = log(1 + ex)

−5 0 5
x

0

2.5034

5.0067

y

Figure C.1: Plot of the function log(1 + ex)

To summarise, when working with the logarithm of probabilities, we replace products with sums, quotients
with subtractions, and sums with a special function which computes Eq. (C.1). This function, which I will
call lse (for log-of-sum-of-exp), should really be part of any toolbox dealing with probabilities. For efficiency,
and in order to deal with zero probabilities correctly (log 0 = −∞), which can lead to results being not-a-
number when evaluating functions of two probabilities which are close to zero), it can be expedient to replace
Eq. (C.1) with:

lse(log p(x), log p(y)) = log(p(x) + p(y)) (C.2)

=


log p(x) if log p(x) > log p(y) + 44

log p(y) if log p(y) > log p(x) + 44

log(1 + elog p(x)−log p(y)) otherwise,

(C.3)

where the constant, 44 in this case, must be adapted to the precision of your machine.
When dealing with long summations, notice that a+ b+ c = (a+ b) + c. We can therefore compute

log(p(x) + p(y) + p(z)) = lse(lse(log p(x), log p(y)), log p(z)) (C.4)

This can then be iterated for summations of any length.
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Appendix D

Jensen’s inequality

Jensen’s inequality states that, for variables λi for which
∑
i λi = 1, if f(x) is a convex function, then:

∑
i

λif(xi) > f

(∑
i

λixi

)
(D.1)

If we further constrain the λi’s to be non-negative, then we can interpret them as probabilities, and then
the above equation can be rewritten as:

E[f(x)] > f(E[x]) (D.2)

for any convex function f(x). This is an important result, and we use it more than once in this course, but
it is hard to get an intuitive feeling of. In the following, I try to provide you with just that intuition. The
proofs are not important, they are really just provided to explain and accompany the figures — the figures
are the important bit, first try to understand those.

Figure D.1 illustrates what a convex function is. A convex function is a function for which any chord,
that is, any straight line between two points on the function, lies above the function.1 We can express a
value x̂ lying between values a and b as x̂ = a + λ′(b− a), with 0 6 λ′ 6 1, or, equivalently (and where we
use λ = 1− λ′ for convenience):

x̂ = λa+ (1− λ)b (D.3)

1Actually, that’s a strictly convex function. With a convex function, the chord can also lie on the function in some segments;
with a strictly convex function, the chord must lie strictly above the function.

f
(x

)

xa

f(a)

b

f(b)

λa+ (1− λ)b

λf(a) + (1− λ)f(b)

Figure D.1: A convex function (shown in red) and a chord between two random points on the function
(shown in blue)
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f
(x

)

xx2

f(x2)

x3

f(x3)

x1

f(x1)

λf(x1) + (1− λ) (λ′f(x2) + (1− λ′)f(x3))

λx1
+

(1
− λ

) (λ
′ x2

+
(1
− λ

′ )x3
)

λ
′ x2

+
(1
− λ

′ )x3

λ′f(x2) + (1− λ′)f(x3)

Figure D.2: Illustration of Jensen’s inequality. A convex function (shown in red) lies below the linear
interpolation between the function values of two random points x2 and x3 (shown in blue). The linear
interpolation between a third point, x1 and any point on the original interpolation between x2 and x3 (shown
in magenta) must therefore lie higher than the linear interpolation between x1 and the corresponding point
on the function between x2 and x3 (shown in dashed magenta), and therefore also higher than the function
itself.

A convex function is, therefore, a function for which

λf(a) + (1− λ)f(b) > f(λa+ (1− λ)b) (D.4)

If we have three variables λ1, λ2 and λ3 such that λ1 + λ2 + λ3 = 1, then, since we have that

λ1f(x1) + λ2f(x2) + λ3f(x3) = λ1f(x1) + (1− λ1)

[
λ2

1− λ1
f(x2) +

λ3

1− λ1
f(x3)

]
(D.5)

and, because the values of λi sum up to one,

λ2

1− λ1
+

λ3

1− λ1
=
λ2 + (1− λ2 − λ1)

1− λ1
= 1 (D.6)

then, from Eq. (D.4), we have that

λ2

1− λ1
f(x2) +

λ3

1− λ1
f(x3) > f(

λ2

1− λ1
x2 +

λ3

1− λ1
x3) (D.7)

and

λ1f(x1) + (1− λ1)f

(
λ2

1− λ1
x2 +

λ3

1− λ1
x3

)
> f

(
λ1x1 + (1− λ1)

[
λ2

1− λ1
x2 +

λ3

1− λ1
x3

])
(D.8)
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Figure D.3: Examples of useful convex functions

and therefore,

λ1f(x1) + λ2f(x2) + λ3f(x3) > f (λ1x1 + λ2x2 + λ3x3) (D.9)

This reasoning can be applied recursively, so that we obtain Eq. (D.1) by induction. Examples of convex
functions are shown in Figure D.3.
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