Bagging and Boosting		

Machine Learning: Pattern Recognition Lecture 12: Combining Models

University of Amsterdam

October 22, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bagging and Boosting		

Introduction

- Bias-Variance Decomposition
- 2 Bagging and Boosting
 - Bagging
 - Boosting

3 Tree-based models

- Classification trees
- Random Forests
- 4 Conditional Mixture Models
 - Mixture vs conditional mixture

Introduction	Bagging and Boosting		

1 Introduction

- Bias-Variance Decomposition
- 2 Bagging and Boosting
 - Bagging
 - Boosting

3 Tree-based models

- Classification trees
- Random Forests
- Conditional Mixture Models
 Mixture vs conditional mixture

Introduction •000000	Bagging and Boosting	Conditional Mixture Models	
Combining models			Slide 4/37
Combini	ng models		× X
			Univer

- Traditional approach: train a classifier to predict a class
- Committee: Combine the output of multiple classifiers
 - For example, average the outputs
 - Alternatively, create a "meta-classifier"

Intelligent Autonomous Systems

SITY OF AMSTERDAM

- Traditional approach: train a classifier to predict a class
- Committee: Combine the output of multiple classifiers
 - For example, average the outputs
 - Alternatively, create a "meta-classifier"

- Traditional approach: train a classifier to predict a class
- Committee: Combine the output of multiple classifiers
 - For example, average the outputs
 - Alternatively, create a "meta-classifier"

- Traditional approach: train a classifier to predict a class
- Committee: Combine the output of multiple classifiers
 - For example, average the outputs
 - Alternatively, create a "meta-classifier"

- Traditional approach: train a classifier to predict a class
- Committee: Combine the output of multiple classifiers
 - For example, average the outputs
 - Alternatively, create a "meta-classifier"

- Traditional approach: train a classifier to predict a class
- Committee: Combine the output of multiple classifiers
 - For example, average the outputs
 - Alternatively, create a "meta-classifier"

Consider *M* regression models $y_m(\mathbf{x}), 1 \le m \le M$ predicting $h(\mathbf{x})$. Each individual prediction error is

$$\epsilon_m(\mathbf{x}) = h(\mathbf{x}) - y_m(\mathbf{x}) \; ,$$

with an averaging committee:

$$y(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x})$$

(日)、

э

$$E_{COM} = \frac{1}{M^2} \mathbb{E}_{\mathbf{x}} \left[\sum_{m=1}^{M} \epsilon_m^2(\mathbf{x}) + 2 \sum_{m \neq n} \epsilon_m(\mathbf{x}) \epsilon_n(\mathbf{x}) \right] = \frac{1}{M} E_{AV}$$

Introduction	Bagging and Boosting		
Combining models			Slide 7/37
Why com	mittees?		Ň

In theory, committees can vastly reduce the expected error of individual classifiers

- Make the expected error arbitrarily small by increasing M
- In practice, the classifiers are highly correlated
 - The error reduction is then small
- But: it can be shown that

$$E_{AV} \ge E_{COM}$$

• We can improve the performance of committees by decreasing the correlation between the classifiers

JNIVERSITY OF AMSTERDAM

Consider multiple training data sets $D = \{(\mathbf{x}_n, t_n)\}$ of fixed size Taking the expected squared loss of a model, we can decompose:

$$\mathbb{E}_{D}[(y_{D}(\mathbf{x}) - t)^{2}] = \underbrace{(\mathbb{E}_{D}[y_{D}(\mathbf{x})] - t)^{2}}_{\text{bias}^{2}} + \underbrace{\mathbb{E}_{D}[(y_{D}(\mathbf{x}) - \mathbb{E}_{D}[y_{D}(\mathbf{x})])^{2}]}_{\text{variance}}$$

Interpretation:

- The bias captures how well the model *can* perform. Flexible models will have low bias.
- The variance captures how much the end model depends on the specific dataset. Flexible models will have high variance.

JNIVERSITY OF AMSTERDAM

Consider multiple training data sets $D = \{(\mathbf{x}_n, t_n)\}$ of fixed size Taking the expected squared loss of a model, we can decompose:

$$\mathbb{E}_{D}[(y_{D}(\mathbf{x}) - t)^{2}] = \underbrace{(\mathbb{E}_{D}[y_{D}(\mathbf{x})] - t)^{2}}_{\text{bias}^{2}} + \underbrace{\mathbb{E}_{D}[(y_{D}(\mathbf{x}) - \mathbb{E}_{D}[y_{D}(\mathbf{x})])^{2}]}_{\text{variance}}$$

Interpretation:

- The bias captures how well the model *can* perform. Flexible models will have low bias.
- The variance captures how much the end model depends on the specific dataset. Flexible models will have high variance.

Bias-Variance decomposition

Bias-Variance decomposition:

- Gives us insight into how a particular model generalises
 - High bias-low variance models do not learn from the data
 - Low bias-high variance models overfit on the training data
 - Optimal model flexibility (e.g., regularisation): good bias-variance trade-off.
- Has little practical value: single training dataset
- Provides insight into why committees are useful

Optimal ensemble learning

For best ensemble performance, we want the base learners to be as accurate as possible and as diverse as possible

Intelligent Autonomous Systems

JNIVERSITY OF AMSTERDAM

Bias-Variance decomposition

Bias-Variance decomposition:

- Gives us insight into how a particular model generalises
 - High bias-low variance models do not learn from the data
 - · Low bias-high variance models overfit on the training data
 - Optimal model flexibility (e.g., regularisation): good bias-variance trade-off.
- Has little practical value: single training dataset
- Provides insight into why committees are useful

Optimal ensemble learning

For best ensemble performance, we want the base learners to be as accurate as possible and as diverse as possible

Intelligent Autonomous Systems

JNIVERSITY OF AMSTERDAM

Bagging and Boosting		

Introduction

- Bias-Variance Decomposition
- 2 Bagging and Boosting
 - Bagging
 - Boosting

3 Tree-based models

- Classification trees
- Random Forests
- 4 Conditional Mixture Models
 Mixture vs conditional mixture

	Bagging and Boosting		
Bagging			Slide 12/37
Making	committees		ě

Where do we get the base learners?

• Single type of classifiers:

Homogeneous learners

 Multiple types of classifiers: Heterogeneous learners

Diversity in homogeneous learners?

- Subsample the training data
- Add randomness to the learning algorithm
- Manipulate attributes or outputs

(日)、

э

	Bagging and Boosting ●00000000000		
Bagging			Slide 12/37
Making	committees		ě

Where do we get the base learners?

• Single type of classifiers:

Homogeneous learners

Multiple types of classifiers: Heterogeneous learners

Diversity in homogeneous learners?

- Subsample the training data
- Add randomness to the learning algorithm
- Manipulate attributes or outputs

	Bagging and Boosting ○●○○○○○○○○		
Bagging			Slide 13/37

Bagging: Bootstrap Aggregation

We rarely have infinite training datasets...

- Nor do we have many
- Using bootstrapping, we can create new datasets
- The correlation between datasets is then known and kept small
- Bootstrap aggregation:

Simply average the outcomes of classifiers trained on different bootstrap datasets

Intelligent Autonomous Systems

INIVERSITY OF AMSTERDAM

	Bagging and Boosting		
Bagging			Slide 14/37
Bagging:	an example		Ň
			University of Amsterdam

In this example:

• A polynomial was fitted to 10 noisy training points (red)

• 1000 polynomials were fitted to bootstrap sets from the same 10 datapoints and averaged (blue line)

	Bagging and Boosting		
Bagging			Slide 14/37
Bagging:	an example		Š
			University of Amsterdam

In this example:

- A polynomial was fitted to 10 noisy training points (red)
- 1000 polynomials were fitted to bootstrap sets from the same 10 datapoints and averaged (blue line)

	Bagging and Boosting 000●00000000		
Bagging			Slide 15/37
Bagging			Ř

INIVERSITY OF AMSTERDAM

(日)、

3

Bagging

- Improves results with high-variance models
- No independent datasets (\Rightarrow small improvements)
- Cannot help with high bias models

Baggi	ng

Bagging and Boosting

Tree-based models

Conditional Mixture Model

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Baggi	ng

Bagging and Boosting

Tree-based models

Conditional Mixture Model

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

	Bagging and Boosting 00000●000000		
Bagging			Slide 17/37
Boosting			Ř

Weak learner Learner that performs better than random Strong learner Learner with accuracy $1 - \epsilon$, where ϵ is arbitrarily small

JNIVERSITY OF AMSTERDAM

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

[Shapire 1990]: Weak learners in the same class as strong learners

Boosting

A technique to combine weak learners to form a strong learner

	Bagging and Boosting 00000●000000		
Bagging			Slide 17/37
Boosting			Ř

JNIVERSITY OF AMSTERDAM

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Weak learner Learner that performs better than random Strong learner Learner with accuracy $1 - \epsilon$, where ϵ is arbitrarily small

[Shapire 1990]: Weak learners in the same class as strong learners

Boosting

A technique to combine weak learners to form a strong learner

Adaptive boosting:

- Assign each training datapoint a weight
- Iterate:
 - Train a classifier based on the weighted training data
 - Assign this classifier a weight based on how well it performs
 - Update the datapoints' weights based on how many classifiers classify it correctly

	Bagging and Boosting ○○○○○○●○○○○		
Boosting			Slide 19/37
Adaptiv	e boosting: the	e algorithm	Ě

$$w_n^{(m+1)} = \begin{cases} w_n^{(m)} & \text{if } y_m(x_n) = t_n \\ w_n^{(m)} \exp \alpha_m & \text{Otherwise} \end{cases}$$

Intelligent Autonomous Systems

UNIVERSITY OF AMSTERDAM

	Bagging and Boosting	I ree-based models	Conditional Mixture Models	
Boosting Example				
	۵	•		
		•	•	
			ightarrow	
)	
			◆□> ◆□> ◆豆> ◆豆>	E

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting		
	000000000000		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

うせん 前 (中学)(中学)(日)

	Bagging and Boosting ○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

・ロト ・ (日)・ ・ (目)・ ・ (目)・ の へ ()

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

	Bagging and Boosting ○○○○○○○●○○○		
Boosting Example			

Adaboost can be interpreted as minimising

$$E = \sum_{n=1}^{N} \exp\left(-\frac{t_n}{2} \sum_{m=1}^{M} \alpha_m y_m(\mathbf{x}_n)\right)$$

As a consequence:

- It strongly penalises misclassifications, not robust to outliers!
- It does not generalise to more than 2 classes
- Octoosing a different error function
 - Allows multiclass classification and even regression (e.g. Gradient Boosting)
 - Makes robust classifiers possible

Intelligent Autonomous Systems

JNIVERSITY OF AMSTERDAM

	Bagging and Boosting ○○○○○○○○●○		
Boosting Example			Slide 22/37
Viola-Jon	es face detecto	or	Ř

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

A nice application of boosting:

• Very simple features (HAAR wavelets)

• Use integral images to compute these very fast

• Use *cascading* for speedup

Intelligent Autonomous Systems

	Bagging and Boosting ○○○○○○○○○●○		
Boosting Example			Slide 22/37
Viola-Jon	es face detect	or	Ř

A nice application of boosting:

- Very simple features (HAAR wavelets)
 - Use integral images to compute these very fast

• Use *cascading* for speedup

Intelligent Autonomous Systems

INIVERSITY OF AMSTERDAM

	Bagging and Boosting ○○○○○○○○○○			
Boosting Example				Slide 22/37
Viola-Jon	es face detect	or		× ×
All	sub-windows 1	2 3 rejected	Further processing	University of Amsterdam

A nice application of boosting:

- Very simple features (HAAR wavelets)
 - Use integral images to compute these very fast
- Use *cascading* for speedup

Intelligent Autonomous Systems

Introduction 0000000 Bagging and Boosting

Tree-based models 000000 Conditional Mixture Models

Summary

Slide 23/37

Ř

UNIVERSITY OF AMSTERDAM

Viola-Jones face detector

Bagging and Boosting	Tree-based models	

Introduction

- Bias-Variance Decomposition
- 2 Bagging and Boosting
 - Bagging
 - Boosting

3 Tree-based models

- Classification trees
- Random Forests
- Conditional Mixture Models
 Mixture vs conditional mixture

	Bagging and Boosting	Tree-based models ●00000		
Classification trees	5			Slide 25/37
Binary 7	ree classifier			××
	$x_2 \leqslant \theta_2$		θ_1 $x_2 > \theta_3$	University of Amsterdam

Tree-based models split the input space in regions

- Each region gets its own classifier
- The classifiers can be extremely simple (typically: constant)

Intelligent Autonomous Systems

	Bagging and Boosting	Tree-based models 000●00	
Classification trees			Slide 28/37
Tree-bas	ed models		Ř
			C

- Interpretable!
- Simple and fast
- If let to grow, will learn perfect classification on the training data

Pros

 Pruning (using validation set) allows proper generalisation • Final tree depends strongly on particular data

Cons

- Hard decisions, aligned with dimensions
- Finding best tree is intractable

NIVERSITY OF AMSTERDAM

	Bagging and Boosting	Tree-based models ○○○○●○	
Random Forests			Slide 29/37
Random	Forests		Š

Combine trees with bagging and random feature selection Procedure: for N datapoints and M features, pre-specify $m \ll M$

- Repeat K times:
 - Get a bootstrap sample
 - At each node in the tree:
 - select *m* features at random
 - Pind the optimal split based on these m features and the training set
 - S Fully grow the tree (no pruning)

This is often considered one of the most powerful committee methods

Intelligent Autonomous Systems

JNIVERSITY OF AMSTERDAM

	Bagging and Boosting	Tree-based models ○○○○○●			
Random Forests					
M = 100 Final decision					

■ _ _ _ へ (~

Bagging and Boosting	Conditional Mixture Models	

Introduction

- Bias-Variance Decomposition
- 2 Bagging and Boosting
 - Bagging
 - Boosting

3 Tree-based models

- Classification trees
- Random Forests

Conditional Mixture Models Mixture vs conditional mixture

	Bagging and Boosting	Conditional Mixture Models	
Mixture vs conditi	onal mixture		Slide 33/37
Mixture	model		Ř

IAS Intelligent Autonomous Systems JNIVERSITY OF AMSTERDAM

 Introduction
 Bagging and Boosting
 Tree-based models
 Conditional Mixture Models
 Summary

 000000
 000000
 00000
 00000
 00000
 00000

 Mixture vs conditional mixture
 Slide 34/37

Hierarchical Conditional Mixture Models

The distribution specified by each mixture element can be anything

• Including a Conditional Mixture Model

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k(\mathbf{x}) p(\mathbf{x}|k)$$

- If π were a constant, this would simplify to a normal mixture model (with ∑_k L_k elements)
- Since π(x) can be a complex function of x, the HCM can model very complex distributions
- Notice the similarity with MDN!

Hierarchical Conditional Mixture Models

The distribution specified by each mixture element can be anything

• Including a Conditional Mixture Model

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k(\mathbf{x}) \sum_{l=1}^{L_k} \pi_{kl}(\mathbf{x}) p(\mathbf{x}|l)$$

- If π were a constant, this would simplify to a normal mixture model (with ∑_k L_k elements)
- Since π(x) can be a complex function of x, the HCM can model very complex distributions
- Notice the similarity with MDN!

		Conditional Mixture Models	
		0000	
Mixture vs conditiona	I mixture		Slide 35/37

Mixture of density networks

<ロト <回ト < 注ト < 注ト

æ

Ř

Bagging and Boosting		Summary

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

- Bias-Variance Decomposition
- 2 Bagging and Boosting
 - Bagging
 - Boosting

3 Tree-based models

- Classification trees
- Random Forests

4 Conditional Mixture Models • Mixture vs conditional mixture

	Bagging and Boosting		Summary
			Slide 37/37
Wrap-up			Ŵ

To summarise:

- Combine models to improve their expressive power (cfr. Mixture of Gaussians)
- Combining independent models can dramatically improve performance
- Making different models responsible for different areas of the space combines simple models into very flexible models

Exercise session:

- Questions
- Mock exam

Lab session:

• No additional lab exercise, so you can prepare for the exam.