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Sampling

Introduction

Recall how graphical models specify the factorisation of a joint
probability distribution

It provides us with algorithms to do marginalisation efficiently

We are still free to choose the specific form of the distributions

However choosing the form is tricky: if we do not choose
wisely, the distribution may not be computable analytically
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Sampling

Example: Intractable distributions
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Sampling

Sampling

We’re generally not really interested in the posterior distribution
for its own sake

Often, we need the posterior distribution to compute the
expectation of some function

E[f ] =

∫
f (z) p(z) dz

Sometimes we want to marginalise out variables

This is often impossible to do analytically
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Sampling

Integrating numerically

We could compute the solution numerically
Computing the integral by summing approximations

Becomes intractable very fast as the dimensionality goes up
How about indefinite integrals (we cannot reach ∞)

Use sampling: if we can draw independent samples
{z(1) . . . z(L)} of p(z), we can approximate

E[f ] =

∫
f (z) p(z) dz ' 1

L

L∑
l=1

f (z(l))
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Sampling

About Sampling

Sampling is therefore useful when:

We cannot represent the joint distribution tractably but we
can evaluate its building blocks

We cannot compute the expectation of f analytically, but we
can evaluate f (x) for given x.

Remember

Samples are easy to manipulate, even if their distribution is not
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Sampling

About Sampling

Things to notice:

The approximation is unbiased: E[f̂ ] = E[f ], and
var[f̂ ] = varp(z)[f ].

The approximation is independent of the dimensionality of z.
In practice 10-20 independent samples generally suffice for a
good approximation.

If the function we want the expectation of is small where p(x)
is large and vice versa, a larger number of samples is needed
for good accuracy.

To get the marginal distribution p(z): sample from the joint
distribution p(x, z) and ignore the values of x
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Sampling

Graphical Models

In the case of Bayesian Networks, we can
use ancestral sampling:

Start at root nodes, sample from
those

For each child node, sample from
the conditional distribution

Example

c

a b

However how do we deal with observed values?

Logic sampling: sample until you reach the observation

If the sampled value agrees with the observation, keep it

Otherwise: discard

Very inefficient and rarely used.
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Transforming samples

Transforming samples

We assume we have a way of generating uniformly distributed
pseudo-random numbers z in the range (0, 1) (p(z) = 1).

How can we obtain samples with a different, desired
distribution?
If y = f (z), the distribution of y is given by

p(y) = p(z)

∣∣∣∣dzdy
∣∣∣∣

z

y
=

f
(z
)
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Transforming samples

Transforming samples

0

1

x

∫ p(x
)
d
x

x

p
(x

)
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Transforming samples

Transforming samples

The good:

Fast and exact

Can easily be extended to multivariate distributions

Works for the (multivariate) Gaussian distribution

Building block for more advanced sampling schemes

The bad:

Only possible for limited, simple distributions
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Rejection Sampling

Rejection sampling

Suppose we know p̃(z) and want to sample from

p(z) =
1

Z
p̃(z)

where p̃(z) is easy to compute, but Z is unknown.

Example

In a Markov Random Fields, the probability densities are given by
the potential functions associated with a clique

p(x) =
1

Z

∏
C

ψC (xc),

where Z is hard to compute.
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Rejection Sampling

z0 z

u0

kq(z0) kq(z)

p̃(z)

Choose a proposal distribution q(z) and find a constant k such that
kq(z) > p̃(z) everywhere

Sample a value z0 from q(z

Sample a value u uniformly from [0, kq(z0)]

Reject the pair if u > p̃(z0)

The resulting values are uniformly distributed in the area under p̃(z),
so that the corresponding values z are distributed according to p(z).
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Rejection Sampling

Rejection sampling
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Rejection Sampling

Importance of the proposal distribution

Samples from q(x) are accepted with probability p̃(z)/kq(z), so
that the probability of acceptance is

p(accept) =

∫
p̃(z)

kq(z)
q(z) dz =

1

k

∫
p̃(z) dz

It is therefore important to keep k as small as possible.

Example: p(z) = N (z|0, σ2pI), q(z) = N (z|0, σ2qI)

�

�������

−5 0 5
0

0.25

0.5

Rejection rate: 1/k

The optimal k = (σq/σp)D

in D dimensions

If D = 1000 and
σq = 1.01σp, 1 sample in
20000 is accepted.
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Rejection Sampling

Adaptive Rejection Sampling

In practice it is often hard to find a good proposal distribution.
However when p̃(z) is log-concave, we can adapt it on the fly:

z1 z2 z3 z

ln p(z)

Find the tangent to p̃(z) at an initial grid of points.

Sample from the piecewise-linear distribution (this is easy, by
transforming uniform samples)

If the sample is rejected, add the current point to the grid,
update q(z).IASIntelligent Autonomous Systems
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Rejection Sampling



Introduction Basic sampling algorithms Markov Chain Monte Carlo Wrap-up

Importance Sampling

Importance sampling

In order to obtain a good estimate of an expectation, it is not
necessary to be able to sample from the distribution

For example: if we can evaluate p(z) easily, we could discretise
the space uniformly and approximate the integrand as

E[f ] '
L∑

l=1

p(z(l))f (z(l))

Problem: Very inaccurate/inefficient, esp. in high dimensional
spaces

Better: Sample from proposal distribution q(z) and reweigh:

E[f ] ' 1

L

L∑
l=1

p(z(l))

q(z(l))
f (z(l))
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Importance Sampling

Importance Sampling

Often we can only evaluate p(z) up to a normalisation constant.
Similarly, it is interesting to be able to sample from q(z) = 1

Z q̃(z).
Then we can define

r̃l =
p̃(z(l))

q̃(z(l))
and wl =

r̃l∑L
m=1 r̃m

and compute the expectation as follows

E[f ] '
L∑

l=1

wl f (z(l))

No samples are thrown away.
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Importance Sampling

Importance Sampling

pros:

No need for a scaling constant

Super-efficient sampling: if q(z) is similar to p(z)f (z), we
require fewer samples for a given accuracy than if q(z) is
similar to p(z)

cons:

if p(z)f (z) is strongly varying, few samples will carry most of
the weight

if q(z) is small where p(z)f (z) is large, it is possible for no
samples to lie in those regions: the samples may then have
low variance while the estimates are severely wrong.
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Importance Sampling

EM Algorithm

Sampling can of course be used for the E-step of the EM
algorithm. Recall that we optimise the expectation of the complete
log-likelihood:

Q(θ,θold) =

∫
p(Z|X,θold) ln p(Z,X|θ) dZ

If we draw from p(Z|X,θold), we get Monte Carlo EM

Q(θ,θold) ' 1

L

L∑
l=1

ln p(Z,X|θ) dZ

which we can optimise with the usual M-step.
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The Metropolis Algorithm

Markov Chain Monte Carlo (MCMC)

The techniques we saw until now suffer severe limitations in
high-dimensional spaces. The Metropolis algorithm circumvents
these by using a conditional proposal distribution:

Sample candidate sample z∗ from a symmetric proposal
distribution q(z∗|z(τ))
Accept the candidate sample with probability

A(z∗, z(τ)) = min

(
1,

p̃(z∗)
p̃(z(τ))

)
If z∗ is rejected, z(τ+1) = z(τ).

This tends to p(z) as τ →∞, if q(zA|zB) > 0 for all zA, zB .

The samples are not independent. Keep every Mth sample for
“independent” samples
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The Metropolis Algorithm

Example: Metropolis sampling of Gaussian
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The Metropolis Algorithm

Convergence of the Markov Chain

We want the chain to converge to a stationary distribution p∗(z).
The distribution p∗(z) is stationary with respect to the chain if

p∗(z) =
∑
z′

p∗(z′)T (z′, z)

A sufficient condition for this is that the chain exhibits detailed
balance:

p∗(z)T (z, z′) = p∗(z′)T (z′, z)

in which case the chain is said to be reversible
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Metropolis-Hastings

Metropolis-Hastings

If the proposal distribution is not symmetric, we can apply the
Metropolis-Hastings algorithm. Accept a candidate sample z∗ with
probability

A(z∗, z(τ)) = min

(
1,

p̃(z∗)q(z(τ), z∗)
p̃(z(τ))q(z∗, z(τ))

)
,

which exhibits detailed balance with respect to p(z).
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Metropolis-Hastings

Proof: Detailed Balance

p(z)q(z|z′)A(z′, z) = p(z)q(z|z′) min(1,
p(z′)q(z′|z)

p(z)q(z|z′)
)

= min(p(z)q(z|z′), p(z′)q(z′|z))

= min(p(z′)q(z′|z), p(z)q(z|z′))

= p(z′)q(z′|z)A(z, z′)

The proposal distribution therefore only affects the efficiency of the
sampling, not their end distribution.
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Metropolis-Hastings

Length scale

Markov chain methods trade off exploration vs. rejection rate.

For low rejection rate,
proposal distribution scale
ρ ≈ σmin

Other directions explored by
random walk

Approx. independent
samples: (σmax/σmin)2 steps

Very different lengths scales
⇒ slow to converge
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Gibbs Sampling

Gibbs Sampling

Gibbs sampling is a special case of Metropolis-Hastings sampling,
where we sample p(z) = p(z1 . . . zD) by sampling each zi in turn.

The proposal distribution is p(zi |z\i )
All samples are accepted: q(z∗|z) = p(zi |z\i ), z∗\i = z\i and

p(z) = p(zi |z\i )p(z\i ), so that

A(z∗, z) =
p(z∗)q(z|z∗)
p(z)q(z∗|z)

=
p(z∗i |z∗\i )p(z∗\i )p(zi |z∗\i )
p(zi |z\i )p(z\i )p(z∗i |z\i )

= 1
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Gibbs Sampling

Example: Gibbs sampling of a Gaussian
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Gibbs Sampling

Example: Gibbs sampling of a Gaussian
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Gibbs Sampling

Practical usability of Gibbs sampling

The practical applicability depends on the ease with which we can
sample from p(zi |z\i ). For graphical models, the conditional
distribution of a node depends on its Markov Blanket:

For directed graphs, the conditional distributions for Gibbs
sampling is often complex but log-concave. Adaptive rejection
sampling is therefore widely applicable in this setting.
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Gibbs Sampling

Particle Filter

One example where MCMC methods perform poorly is for
sequential data, such as extensions of the linear dynamical system

The states are by definition strongly correlated: sampling
algorithms converge slowly

Instead of sampling from the joint distribution, the particle
filter will do a forward pass through the data

Use the process noise as proposal distribution (which is exact)

Update the weights of the particles according to the
probability of the observation given the sample

Resample, to keep more particles in the high-density areas
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Wrap-up

Summary

Today we’ve seen sampling:

Why do we do this (Bishop, p. 523-525)

Basic sampling algorithms (Bishop, p. 528-534)

Markov Chain Monte Carlo (Bishop, p. 537-546)
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