Lecture 9
Kernel Methods

University of Amsterdam

@ Introduction
@ Basis functions

© Kernel Density Estimation
@ Parzen Estimation
@ The Nadaraya-Watson Model
@ Kernel functions

© Gaussian Processes
@ The Gaussian Distribution
@ Linear regression, again
@ Gaussian Processes

@ Support Vector Machines
@ Sparse Kernel Machines
@ Linear Classification

e Wrap-up

Introduction

@ Introduction
@ Basis functions

Introduction
e0

Basis functions

.

Basis Functions

Recall that by transforming the features, we could transform harder
problems into easier ones

NVAIILSINY J0 ALISHIAIN()

Intelligent Autonomous Systems

Introduction
o]]

Basis functions

Parametric vs. Non-parametric

Last week, we saw one way to find good basis functions
automatically:

@ Multi-layer neural networks allow us to define functions over
functions

@ The clear distinction between feature extractor and classifier
disappears

@ Feature extractor adapts to the data
@ Parametric method
Today we see another approach:
@ Use data, not parameters, to describe the basis functions
@ Similar to kNN

@ Non-parametric method

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

Introduction
o]]

Basis functions

Parametric vs. Non-parametric

Last week, we saw one way to find good basis functions
automatically:

@ Multi-layer neural networks allow us to define functions over
functions

@ The clear distinction between feature extractor and classifier
disappears

@ Feature extractor adapts to the data
@ Parametric method
Today we see another approach:
@ Use data, not parameters, to describe the basis functions
@ Similar to kNN

@ Non-parametric method

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

Kernel Density Estimation

© Kernel Density Estimation
@ Parzen Estimation
@ The Nadaraya-Watson Model
@ Kernel functions

Kernel Density Estimation
[leJe]e]

Parzen Estimation

Kernel density estimation

If we try to evaluate the distribution of data without assuming a
parametric form of the density, we can use histograms:

@ Discretise the data space
@ Count the number of data elements in each bin
This has disadvantages:
@ The bin positions and widths affect the density estimate

@ The number of bins grows exponentially with the number of
dimensions of the data

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

Kernel Density Estimation
[e] Te]e]

Parzen Estimation

> A =004 '

0 ‘Zm—_/m
0 0.5 1

5 .

A =0.08

m__‘siii-h_‘liiilll

0 0.5 1

S A—025 '
0

0 0.5 1

Kernel Density Estimation
[e]e] o]

Parzen Estimation

Parzen Estimators

A technique that scales better with the dimensionality
@ Consider a kernel function centred on each training data point

@ If this kernel is non-negative for all x and normalised, this
gives a valid estimate of the data density

@ A common choice is the Gaussian. The corresponding
estimate of the data density is then

1. 1 1% — %42
p(x) = N nz_; W exp <_2h2> (1)

where h is the standard deviation of our Gaussian components
and controls the smoothness of our estimate

NVAIILSINY J0 ALISHIAIN()

Intelligent Autonomous Systems

Introduction Kernel Density Estimation

Parzen Estimation

5
h = 0.005
LA .
0 0.5 1
h = 0.07 '
O ‘_—/__\’_/-\
0 0.5 1
h=0.2 '
p
O 1
0 0.5 1

Kernel Density Estimation
e0

The Nadaraya-Watson Model

The Nadaraya-Watson Model

In this model, we use kernels to evaluate the joint distribution of x
and t

p(x, t) = = Zf — Xp, t — t,) (2)

We can then evaluate the conditional probability density

p(t]x) = /”((”) 3)
p(x, t
Zrlyzl f(x —Xp, t — tp) ()

SN] (X = X, t — t)dt

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

Kernel Density Estimation
o]]

The Nadaraya-Watson Model

1.5

Kernel Density Estimation
[ele}

Kernel functions

Kernel functions

Many linear, parametric models can be re-cast into the evaluation
of a kernel function k(x,x’) at the training data points.

@ This is called the dual representation

For models based on a fixed mapping x — ¢(x), this kernel can be
written as:

k(x,x') = ¢(x) " p(x') (5)

This allows us to extend many methods:

@ If the input vector x only appears in scalar products, we can
replace that product with some other kernel function.

@ This is called Kernel Substitution or the Kernel Trick

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

Kernel Density Estimation
oeo

Kernel functions

Working in Kernel Space

X
X
X

We can rewrite our kernelised machine to work with the kernel
function only

e That is, ¢(x) need never be considered explicitly

@ This allows us to consider very large (even infinite) feature
vectors ¢(x), while keeping the computations tractable

A trivial example: 3D computation in 2D

Consider the feature vector

NVAIILSINY J0 ALISHIAIN()

D(x) = (¢, V2xax2,x3) (6)

o(x) " d(2) = (4, V2xxe, 3)(2, V22122, 23) " (7)
= X222 4+ 221020 + X525 (8)

= (x"2)% = k(x, 2) (9)

Intelligent Autonomous Systems

Kernel Density Estimation
[e]e]]

Kernel functions

Building Kernel Functions

Valid kernel functions can be obtained in a variety of ways:

e Explicitly create the feature vector ¢p(x) and find the
corresponding k(x,x’). This can be very difficult to do.

@ A sufficient condition for a kernel function is that the Gram
Matrix K

k(Xl,X]_) k(X]_,Xn)
K=0od' = : : (10)
k(xp,x1) -+ k(Xn,Xpn)

is positive semi-definite for any set {x;...x,}

@ The easiest way of constructing new kernel functions is to
take a valid kernel and apply a transformation that is known
to preserve positive semi-definiteness of K

Intelligent Autonomous Systems

X
X
X

NVAIILSINY J0 ALISHIAIN()

Gaussian Processes

© Gaussian Processes
@ The Gaussian Distribution
@ Linear regression, again
@ Gaussian Processes

Gaussian Processes
[ele}

The Gaussian Distribution

.

Gaussian Processes

@ A Gaussian process defines a distribution over functions

@ A function can be seen as an infinite set of values, one for
each possible input

NVAIILSINY J0 ALISHIAIN[)

@ In practice, we never need to evaluate the function for all
possible inputs

@ Therefore, it is sufficient to be able to evaluate the probability
distribution over the outputs for any possible input.

@ For every set of inputs, we need to be able to specify how the
outputs covary.

Intelligent Autonomous Systems

Gaussian Processes
oeo O

I
.......000..
°®%%0
e
a
'5' 0 —0 -
O L] L]
......... R
o0
|

Input

Gaussian Processes
ooe

The Gaussian Distribution

The Gaussian Distribution

Ty
2y =07 plaalzy =0.7)

NWVAIILSINY J0 ALISHIAIN[)

05

P(Ta, -Tb)

0 05 o 1

Intelligent Autonomous Systems

Gaussian Processes
e0

Linear regression, again

We consider the linear regression model
y(x) = w'p(x) (11)
with a zero-mean Gaussian prior over the weights
p(w) = N(wl0,a 1) (12)

This induces a probability distribution over the vector y of values
of y(xp), which is also Gaussian because y = ®w The mean and
covariance of y are

Ely] = ®E[w] =0 (13)
1

covly] = E[yy '] = ®E[ww ' |®T = ad)CDT =K (14)

Gaussian Processes
o]]

Linear regression, again

Gaussian Processes

In general, a Gaussian Process is defined as
e A distribution over y(x),

@ such that the joint distribution of a set of y(x) at any set
{x1...xn} is Gaussian

NVAIILSINY J0 ALISHIAIN()

@ The process is defined solely by the mean and covariance

@ The mean is generally taken to be zero
e This is equivalent with choosing zero mean on the prior p(w)

Intelligent Autonomous Systems

Gaussian Processes
@0000

Gaussian Processes

Gaussian Processes for Regression

We define a model of our output values y, which are normally
distributed with as covariance some Gramm matrix K

p(y|X) = N(y|0,K) (15)

NB: K is a function of the (training) data x; ...xy
If we consider that the target values t are normally i.i.d. around
the output values, their conditional distribution is given by

p(tly) = N(tly, 3711) (16)
The marginal distribution of the targets is then given by
p(tX) = [plely)p(yIX)dy = A'(H0.C) (17)
where
C(Xns Xm) = k(Xn, Xm) + B 0pm (18)

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

Gaussian Processes
(o] Jelele]

Gaussian Processes

Prediction
3

The Gaussian Process then allows us to predict ty41 given the (%
training data Xy = (x1,...,Xn),ty = (t1,..., ty) and a new 3
input xy+1. We know the joint distribution over S
tyer = (t1,. .. ty, tnge) is 3

2

=

p(tns1|Xns1) = N (tn41]0, Chir) (19) g

It is then a standard result for the Gaussian that we can compute
p(tns1ltn) = N(tns1|m, o) by partitioning

C k
Cni1= <k,TV C> (20)

and computing m = kTCNltN and 0 = ¢ — kTCX,lk

Intelligent Autonomous Systems

Gaussian Processes
(e]e] Tele]

Gaussian Processes

To summarise

@ We choose a prior over the possible functions that generated
the data, in the form of a kernel function

NWVAIILSINY J0 ALISHIAIN[)

Example

A usual prior is

k(Xp,Xm) = 0o exp (—92—1||xn — xm||2) + 0 + 03x,] X (21)

Intelligent Autonomous Systems

Gaussian Processes
(e]e] Tele]

Gaussian Processes

To summarise

S
© We choose a prior over the possible functions that generated 5
the data, in the form of a kernel function é’
o
]
4]
:
Example: Sampling from the prior 2
(1.00,4.00, 0.00, 0.00) (1.00,64.00,0.00, 0.00) (1.00,4.00, 0.00, 5.00)
3 3 4
15
0
-15
-3
=i =03 0 0.5 -0.5 0 0.5 1

Intelligent Autonomous Systems

Gaussian Processes
(e]e] Tele]

Gaussian Processes

To summarise

3
© We choose a prior over the possible functions that generated ;U
the data, in the form of a kernel function é’
@ We marginalise out the actual function and compute S
conditional the distribution of new targets based on the E
training data E
&
Example: Conditioning on the data 2
T) .
m(xg'T > e o -
S A © A
"K&_ ‘ -05
— “ =
-1 0 1 0 0.2 0.4 0.6 0.8 1

Intelligent Autonomous Systems

Gaussian Processes
(e]e]e] o]

Gaussian Processes

Some other things to consider

@ The prior has an important impact on the functions the model
considers: finding good parameters for the kernel function is
important

@ The kernel function parameters can be learnt by maximum
likelihood: Type 2 Maximum Likelihood

@ Neural networks tend to Gaussian processes in the limit of
M — oo for a broad class of priors p(w). However in this limit
the hidden nodes are independent.

NVAIILSINY J0 ALISHIAIN()

@ Gaussian processes can be used for classification by
transforming the output of the Gaussian process with a
logistic function o(a). This requires approximations.

Intelligent Autonomous Systems

Gaussian Processes
(e]e]e]e]]

Gaussian Processes

Automatic Relevance Determination (ARD)

Kernel functions can give different weights to different inputs.
Optimise the marginal likelihood to learn the value of each input.

D
1
k(x,x') = 6g exp (2 exp Z ni(xi — x,{)2>

i=1

Example: Noisy variables

t ~N(sin(2mx1)) x1~N x~N(x1) x3~N

NVAIILSINY J0 ALISHIAIN[)

10°

10

10°

10°

. Aut <
Intelligent y -~

S

@ Support Vector Machines
@ Sparse Kernel Machines
@ Linear Classification

Sparse Kernel Machines

Support vector machines

Kernel machines can be computationally expensive

@ The kernel function k(x,x’) must be evaluated for all pairs x
and x’ of training points

@ This can be computationally infeasible during training and
lead to slow prediction for new data points

@ One solution is to use only a small subset of the training data

@ So how do we choose the training points to use?

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

S
©000000

Linear Classification

Linear Classification

Consider a data set (X,t) where the targets t1,...,ty € {—1,+1}
are linearly separable.

@ There exists at least one choice of parameters w so that

y(xp) >0 forall t, =+1
y(xn) <0 forall t, =—1

y(x) = w' ¢(x) + b and {

@ In order to optimise generalisation, we maximise the margin

@ One justification for this is to describe the density of the data
using Parzen estimators and find the hyperplane that
minimises the probability of error. In the limit for Parzen
estimators with ¢ — 0 this hyperplane corresponds to the
maximum margin separator.

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

S
0®00000

Linear Classification

.

Maximising the margin

<
I
I
—
WVAYALSINY A0 ALISYIAIN()

margin

Intelligent Autonomous Systems

S
00®0000

Linear Classification

Optimisation

This is a constrained optimisation problem: maximise the distance
between the closest points and the margin, while keeping
everything correctly classified:

ar max m|n S(w ! o(x,
e <|| [il o)+b)1) (21)

NVAIILSINY J0 ALISHIAIN()

This is fiendishly difficult, but we can make it easier: it is
equivalent to minimising ||w||? subject to the constraints

ta(w' @(xp) + b) > 1 (22)

which we can solve using Lagrange multipliers.

Intelligent Autonomous Systems

S
000®000

Linear Classification
The Lagrangian is given by:

N

£(w,b,a) = [l — > an (ta(w @) +)~ 1) (23)

n=1

Solving this for w and b gives

N N
w = Z antad(xn) 0= Z antn (24)
n=1 n=1

When we re-introduce these in the Lagrangian, we obtain the dual
representation of the problem:

Z an — % Z Z anamtntmk(Xn, Xm) (25)

n=1m=1

where k(xp, Xm) = @(xn) " d(xm) and from which we get a

S
000000

Linear Classification

Classification with SVM

NVAIILSINY J0 ALISHIAIN()

Intelligent Autonomous Systems

S
0000080

Linear Classification

Other considerations

Some important aspects of SVM:

@ We can extend the SVM to overlapping class distributions by
introducing a slack variable &, for each data point, and add a
soft penalty for misclassified points

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

S
folelelele] Yol

Linear Classification

Other considerations

Some important aspects of SVM:

We can extend the SVM to overlapping class distributions by
introducing a slack variable &, for each data point, and add a
soft penalty for misclassified points

SVM are inherently 2-class classifiers. We have seen before
what problems occur when combining such classifiers for
multi-class problems. This is still an open issue, but in

practice combined one-versus-the-rest is most commonly used.

SVMs only provide classifications, and no confidence in the
classification. It is therefore difficult to integrate them with
probabilistic methods.

They are probably the best off-the-shelf classifier available at
this point in time

Intelligent Autonomous Systems

NVAIILSINY J0 ALISHIAIN()

S
000000e

Linear Classification

Regression

SVM can also be used for regression g
i

1 A N 1 2

E=53 (o to+ SIWIE — €Y Elya— 1) +5IwlP 3
n=1 n=1 ?

2

=

&

z

Ely—1) = 0 if ly—tl<e
Vv " \ly—t|—€ otherwise.

Intelligent Autonomous Systems

Wrap-up

e Wrap-up

Wrap-up
[]

Wrap-up

Summary

We've talked about kernel methods

@ Dual representation (Bishop, p. 291-294)
@ Parzen estimators (Bishop, p. 122-124)
@ Gaussian Processes (Bishop, p. 303-313)
@ Support Vector Machines (Bishop, p.325-331)

For the lab, we continue our implementation of EM and next week
work with GP and SVM.

Intelligent Autonomous Systems

X
X
X

NVAIILSINY J0 ALISHIAIN()

	Introduction
	Basis functions

	Kernel Density Estimation
	Parzen Estimation
	The Nadaraya-Watson Model
	Kernel functions

	Gaussian Processes
	The Gaussian Distribution
	Linear regression, again
	Gaussian Processes

	Support Vector Machines
	Sparse Kernel Machines
	Linear Classification

	Wrap-up

