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Basis functions

Basis Functions

Recall that by transforming the features, we could transform harder
problems into easier ones
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Basis functions

Adaptive Basis Functions

Today we look at a technique to find the basis functions
automatically

(Artificial) Neural Networks

Inspired from biology (neurons)

Their biological plausibility has often been exaggerated
Nevertheless some of the problems they have are also shown by
biological systems (e.g. Moiré effect)
Being biologically implausible does not affect the usefulness as
artificial learning systems

Based on the perceptron (cf. lecture 3)
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Perceptrons

Perceptrons

Perceptrons:

Output: step function of linear combination of inputs

y(x) = h(w>x) (1)

Step function y(·)⇒ non-linear

Multiple layers would make complex functions possible

non-linear functions of non-linear functions

Training of single layer is problematic

Convergence
non-separable training data
Solution depends on initialisation

Training of multiple layers would be next to impossible

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Training Regularisation Invariance Mixtures Summary

Perceptrons

Neural Networks

By using a differentiable activation function, we can make training
much easier

For example: logistic activation function:

σ(a) =
1

1 + exp(−a)
(2)
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Perceptrons

Neural Networks

By using a differentiable activation function, we can make training
much easier

For example: logistic activation function:
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Perceptrons

Multi-layer perceptrons

With a clever application of the chain rule of derivations we can
combine multiple layers and still train the network.

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Multi-layer perceptrons (MLP) — not really perceptrons at all
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Perceptrons

Architecture

The architecture is constrained

In order to be trainable, a feed-forward architecture is required

Can be sparse

Can have skip-layer connections

This is clearly much more constrained than biological neural
networks
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Perceptrons

Universal Function Approximators

Combining two layers results in function of the form

yk(x,w) = h2

 M∑
j=0

w
(2)
kj h1

(
D∑
i=0

w
(1)
ji xi

) (3)

The combined, weighted non-linearities make very complex
functions possible

A two-layer network with “linear” output activation function
can approximate any continuous function within a compact
domain with arbitrary precision

If the hidden layer has sufficient units
Holds for many activation functions of the hidden units (but
not polynomials)
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Perceptrons

Universal Function Approximators

Example: 3 hidden units and tanh activation
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Perceptrons

Universal Function Approximators

Example: 3 hidden units and tanh activation
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Perceptrons

Universal Function Approximators

Example: 3 hidden units and tanh activation
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Perceptrons

Universal Function Approximators

Example: 3 hidden units and tanh activation
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Parameter optimisation

Weight symmetries

Multiple parameter values result in equivalent networks:

If h(a) is odd (e.g. hyperbolic tangent tanh, . . . )

h(−a) = −h(a), (4)

changing the sign of all weights leading into a node and all
weights leading out of that node

Exchanging all weights of a hidden node with all weights of
another node in the same layer

In total: M!2M symmetries

Little importance in practice (but see later)

Complex, non-linear function — local optima
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Parameter optimisation

Training methods

Choose an error function E and adapt the parameters in order to
minimise it.

Strongly non-linear, with many optima

No closed-form solution for the parameters
Numerical, iterative procedure

Efficient methods based on gradient (Gradient Descent,
Quasi-Newton, . . . )

Stochastic gradient descent has advantages over batch
methods:

More efficient at handling redundancy
Escapes local minima more easily

So how do we compute the gradient?
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Error Backpropagation

Backpropagation

Backpropagation works in two passes:

Forward pass : computing the activations of the hidden and
output units.

Backward pass : computing the gradients of the error function

In a feed-forward network, each node computes

aj =
∑
i

wjizi , (5)

which is transformed by an activation function, so that

zj = h(aj) (6)

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Training Regularisation Invariance Mixtures Summary

Error Backpropagation

Backpropagation II

For each input xn in the training set, we have an associated target
tn and corresponding error En. The partial derivative of the error
with respect to a weight wji can be decomposed using the chain
rule:

∂En

∂wji
=
∂En

∂aj

∂aj
∂wji

(7)

From (5) we have
∂aj
∂wji

= zi and we introduce δj ≡ ∂En
∂aj

so that:

∂En

∂wji
= δjzi (8)
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Error Backpropagation

Backpropagation III

If we choose the sum-of-squared error function

En =
1

2

∑
k

(ynk − tnk)2 (9)

with ynk = w>z, the gradient ∂En
∂wji

= (ynj − tnj)zni , so that

δk = yk − tk (10)

We can then compute the derivative with respect to the previous
layer as:

δj ≡
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

(11)

where ak =
∑

j wjkh(aj), so that for a single node j

δj = h′(aj)
∑
k

wkjδk (12)
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Error Backpropagation

Backpropagation

Summary

zi

zj

δj
δk

δ1

wji wkj

Error Backpropagation

1 Forward propagate an input vector
xn to find the activations for the
hidden units

2 Evaluate δk for all hidden units

3 Backpropagate the δk using (12)
to obtain δj for all hidden units

4 Use (8) to find the derivatives
with respect to the weights

Backpropagation can also be used to compute other
derivatives of the error function, second derivatives, . . .

In practice, it is easy and useful to check the validity of an
implementation using the method of finite differences.IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Training Regularisation Invariance Mixtures Summary

1 Introduction

2 Training
Parameter optimisation
Error Backpropagation

3 Regularisation
Model Complexity
Weight decay
Early stopping

4 Input invariance
Tangent propagation
Convolutional Neural Networks

5 Mixture of density networks

6 Summary



Introduction Training Regularisation Invariance Mixtures Summary

Model Complexity

Regularisation

The number of input and output units is generally imposed by the
problem, but the number of hidden units may vary

Example
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Model Complexity

Regularisation

The number of input and output units is generally imposed by the
problem, but the number of hidden units may vary

Example
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Model Complexity

Regularisation

The number of input and output units is generally imposed by the
problem, but the number of hidden units may vary

Example
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Model Complexity

Regularisation

Yet the generalisation performance is not a simple function of M

Example: error on left-out data

0 2 4 6 8 10

60

80

100

120

140

160

30 random starts
per size

Initial weights
sampled from a
Gaussian
distribution

In this particular case, the lowest validation error was for M = 8
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Weight decay

Weight decay
Again, the traditional technique: penalise large weights

Ẽ (w) = E (w) +
λ

2
w>w, (13)

which can be interpreted as the negative logarithm of a zero-mean
Gaussian prior over the weights
Problem: if we should do a linear transformation of the data and train a
new network on the transformed data, we should obtain an equivalent
network (with linearly transformed input weights)

Weight decay treats all weights equally (biases included)

It does therefore not satisfy this property

Solution: Treat the weights of each layer separately, and do not constrain
the biases

Ẽ (w) = E (w) +
λ1
2

∑
w∈W∞

w2 +
λ2
2

∑
w∈W∈

w2 (14)
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Weight decay

Improper priors

The split regularisation term also corresponds to a prior over the
weights:

p(w|λ1, λ2) ∝ exp

λ1
2

∑
w∈W1

w2 +
λ2
2

∑
w∈W2

w2

 (15)

but these are improper because the bias parameters are
unconstrained.

It is therefore customary to add separate priors over the bias
parameters

We can generalise this and consider priors over arbitrary
groups of parameters
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Early stopping

Early Stopping

An alternative is to stop training when things get worse

Example

0 10 20 30 40 50
0.15

0.2

0.25

0 10 20 30 40 50
0.35

0.4

0.45

This is similar to weight decay: if we start from the origin,
stopping early restricts the weights to small values
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The problem

Input Invariance

MLP are extremely flexible

In a way, we’re doing automatic feature extraction and
regression/classification at the same time

Overfitting is a problem

Often, however, we know what aspects of the data do not matter

Digit example: Translation/Rotation

(a) (d)

We would like to find ways to force the MLP to be invariant to
those variations, without discarding valuable informationIASIntelligent Autonomous Systems
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Some solutions

Encouraging invariance

Approaches to encourage the model to be invariant to certain
transformations

1 Augment training set with modified patterns with desired
invariances

2 Penalise changes in error function due to invariances (Tangent
propagation)

3 Pre-process data: extract transformation-insensitive features

4 Build invariances into network structure
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Tangent propagation

Augmenting the training set

Example

Easy to implement
Particularly appropriate for on-line learning

Apply random transformation as we cycle through the data

In the limit for infinite set of variations: equivalent with
tangent propagationIASIntelligent Autonomous Systems
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Tangent propagation

Tangent propagation

In the case of continuous transformation, a transformed input pattern will
result in a manifold M in the input space

Example

x1

x2

xn

τn

ξ

M

Suppose the transformation s is con-
trolled by a single parameter ξ, and
s(x, 0) = x
We are interested in small variations
⇒ approximate manifold with tangent
vector
We want the error to be invariant to
changes in ξ around the training data

Regularised error Ẽ = E + λΩ, where

Ω =
1

2

∑
n

∑
k

(
∂yk
∂ξ

∣∣∣∣
ξ=0

)2

(16)
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Tangent propagation

Tangent Propagation

From the chain rule, we have

∂yk
∂ξ

∣∣∣∣
ξ=0

=
D∑
i=1

∂yk
∂xi

∂xi
∂ξ

∣∣∣∣∣
ξ=0

(17)

where
∂yk
∂xi

is the so-called Jacobian and can easily be computed
using back-propagation
∂xi
∂ξ is often obtained numerically using finite differences
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Tangent propagation

Example

(a) (d)

(b) (c)
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Convolutional Neural Networks

Convolutional Neural Networks

Fully connected neural networks can learn the right invariances
given enough training data, however this still disregards aspects of
the data

Specifically, in images: nearby pixels are more strongly
correlated

In computer vision, this is often leveraged to extract local
features from the image

Features that are useful in one location are likely to be useful
elsewhere, e.g. if an object was translated

These aspects are included in CNN through:

Local receptive fields

Weight sharing

Subsampling
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Convolutional Neural Networks

Input image Convolutional layer
Sub-sampling
layer
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Convolutional Neural Networks

Convolutional Neural Networks

Local receptive fields:

Only specific weights are non-zero

Weight Sharing:

Force the weights to be identical over different fields

Requires a simple adaptation of backpropagation

Subsampling:

Combine 2× 2 node grid from convolutional layer into a single
node in subsampling layer

Non-overlapping grids

Introduces a degree of translation invariance

In practice:

multiple iterations of convolution and subsampling

End layer typically fully connected with softmax outputIASIntelligent Autonomous Systems
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Mixture of density networks

Mixture of Density Networks

Minimising the sum-squared-error is equivalent with assuming
Gaussian noise on the output

This is not always a valid assumption

In particular, we often want to solve “inverse problems”

Example

L1

L2

θ1

θ2

(x1, x2) (x1, x2)

elbow
down

elbow
up
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Mixture of density networks

Mixture of Density Networks

We therefore assume a mixture of Gaussians for the output noise,
and let the network learn the parameters of the mixture

p(ttt|x) =
K∑

k=1

πkN (ttt |µk(x), σ2k(x)) (18)

We enforce the constraints with our selection of output activation
functions:∑

k πk = 1: use softmax

πk(x) =
exp(aπk )∑K
l=1 exp(aπl )

(19)

σk(x) > 0: use exponentials

µk(x) can have any real value: use linear activation function
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Mixture of density networks

Example
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Mixture of density networks

Example

(a)

0 1

0

1

(b)

0 1

0

1

(c)

0 1

0

1

(d)

0 1
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Wrap up

Today, we’ve seen MLPs:

General description and uses (Bishop, p. 225-232)

Backpropagation (Bishop, p. 241-245)

Regularisation and input invariance (Bishop, p. 256-269)

Mixtures of density networks (Bishop, p. 272-275)

Exercise:

Simple application of backpropagation

Lab:

Exercise on neural networks
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7 Activation functions
The hyperbolic tangent



Activation functions

The hyperbolic tangent

Hyperbolic tangent

-1.5

-1

-0.5

0

0.5

1

1.5

-10 -5 0 5 10

h(
a)

a

h(a) ≡ tanh(a) =
ea − e−a

ea + e−a
(20)

dh(a)

da
= 1 − h2(a) (21)

back
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