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Probabilistic modelling

When given the joint probability distribution, we can answer any question
about variables

Example

If we know p(A,B,C ), we can answer questions such as p(A|C ), the
probability that A should have a certain value if C is observed, using
Bayes’ rule

p(A|C ) =
p(A,C )

p(C )

where p(A,C ) =
∫
p(A,B,C ) dB and p(C ) =

∫∫
p(A,B,C ) dA dB
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Marginalisation

This requires marginalisation

in general: exponential in number of variables

computationally expensive or even intractable!

complexity reduced if some variables are independent of others

Graphical models provide a simple way to express independence
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Probabilistic Graphical Models

Gained increasing popularity in Machine Learning because:

They provide a simple way to visualise the structure of a probabilistic
model and can be used to design and motivate new models

Insights into the property of the models can be obtained by
inspection of the graph

Complex computations, required to perform inference and learning in
sophisticated models, can be expressed in terms of graphical
manipulations.
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The basics

In a graphical model

Random Variables are denoted as nodes, and they can be discrete or
continuous

Relations are denoted by edges (can be directed or undirected)

Shaded nodes represent observed variables

Plates represent repetition

T A
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The basics

In a graphical model

Random Variables are denoted as nodes, and they can be discrete or
continuous

Relations are denoted by edges (can be directed or undirected)

Shaded nodes represent observed variables

Plates represent repetition

T

A1

..
.

AN
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The basics

In a graphical model

Random Variables are denoted as nodes, and they can be discrete or
continuous

Relations are denoted by edges (can be directed or undirected)

Shaded nodes represent observed variables

Plates represent repetition

T An

N
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The basics

In a graphical model

Random Variables are denoted as nodes, and they can be discrete or
continuous

Relations are denoted by edges (can be directed or undirected)

Shaded nodes represent observed variables

Plates represent repetition

The graphical model represents the factorisation of the joint
distribution of the variables

To use the model, we need to be able to do both learning and
inference. In this lecture we focus on inference
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The basics

Bayesian Networks

Example Bayesian Network

x1

x2

x4 x5

x3

x6 x7

In this example we see nodes
x = x1 . . . x7

Their joint probability is
p(x) = p(x1, x2, . . . , x7)

The graph implies an explicit
factorisation of this joint
distribution

p(x) =
∏7

k=1 p(xk |pa(xk))

p(x) = p(x1) p(x2) p(x3) p(x4|x1, x2, x3) p(x5|x1, x3) p(x6|x4) p(x7|x4, x5)
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p(x) = p(x1) p(x2) p(x3) p(x4|x1, x2, x3) p(x5|x1, x3) p(x6|x4) p(x7|x4, x5)

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Bayesian Networks Markov Random Fields Factor Graphs Summing up Inference

The basics

Factorisation

The full joint distribution can always be factorised as

p(x) =p(x7|x1, x2, x3, x4, x5, x6) p(x6|x1, x2, x3, x4, x5)

p(x5|x1, x2, x3, x4) p(x4|x1, x2, x3)

p(x3|x1, x2) p(x2|x1) p(x1)

for which we would need 27 − 1 parameters

p(x) = p(x1)︸ ︷︷ ︸
1

p(x2)︸ ︷︷ ︸
1

p(x3)︸ ︷︷ ︸
1

p(x4|x1, x2, x3)︸ ︷︷ ︸
8

p(x5|x1, x3)︸ ︷︷ ︸
4

p(x6|x4)︸ ︷︷ ︸
2

p(x7|x4, x5)︸ ︷︷ ︸
4

requires just 21 parameters.

Remember: keep the simplest hypothesis that explains the data
“well enough”

Thus, the missing edges are what matters!
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Independence

Independence

Two sets of random variables A and B are independent (denoted as
A⊥⊥B) if and only if

p(A,B) = p(A)p(B) (1)

The variables in set A contain no information about those in set B.
Learning the value(s) of variable(s) in set A, doesn’t change the
probability distribution over the variables in set B.

Imagine throwing two fair coins. Knowing that the first came heads,
doesn’t change the distribution over the results of the second:

c1 = H c1 = T
c2 = H 0.5 0.5
c2 = T 0.5 0.5

From the product rule, eq. 1 implies that: p(A|B) = p(A)

This provides no information about the conditional independence of
variables
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Independence

Conditional Independence

Two sets of random variables A and B are conditionally independent
given a set C if and only if

p(A,B|C ) = p(A|C ) p(B|C ) (2)

Here, the variables of set A contain no information about those of
set B when we know the values of all the variables of set C .

Imagine throwing two fair coins, given the value of a function f that
indicates whether c1 = c2. Knowing that the first came heads,
changes the distribution over the results of the second!

f=0 c1=H c1=T f=1 c1=H c1=T
c2=H 0 1 c2=H 1 0
c2=T 1 0 c2=T 0 1

Similarly, equation 2 implies that: p(A|C ) = p(A|B,C )

This is no information regarding any marginal independence between
A and B
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Independence

Entering college

Example

Consider two characteristics of a person. Being smart, denoted by
binary variable S , and being an athlete, denoted by binary variable A.

Let’s assume that 40% of the population is smart, and 10% of the
population is an athlete.

Furthermore, let’s denote the fact that someone entered college with
the binary variable C . If you are smart you have higher chances of
entering college as well as if you are an athlete. Let’s say these
probabilities are:

p(C = c |A,S) A = a A = ¬a
S = s 0.91 0.90
S = ¬s 0.90 0.04

How would this graphical model look, and what would the
factorisation imply?
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Independence

Entering college

Example

S A

C

p(C ,A,S) = p(C |A,S) p(A) p(S)

What is the probability that an
athlete is smart?

What is the probability that a smart
person is an athlete?

Does this probability change if we
meet this person in our college
class?

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Bayesian Networks Markov Random Fields Factor Graphs Summing up Inference

Independence

Entering college

Example

S A

C

p(C ,A,S) = p(C |A,S) p(A) p(S)

What is the probability that an
athlete is smart? 0.4

What is the probability that a smart
person is an athlete?

Does this probability change if we
meet this person in our college
class?
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Independence

Entering college

Example

S A

C

p(C ,A,S) = p(C |A,S) p(A) p(S)

What is the probability that an
athlete is smart? 0.4

What is the probability that a smart
person is an athlete? p(A|S) = 0.1

Does this probability change if we
meet this person in our college
class?
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Independence

Entering college

Example

S A

C

p(C ,A,S) = p(C |A,S) p(A) p(S)

What is the probability that an
athlete is smart? 0.4

What is the probability that a smart
person is an athlete? p(A|S) = 0.1

Does this probability change if we
meet this person in our college
class? p(A|S ,C ) ≈ 0.1
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Independence

Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station.
At central station, there are two reasons why bikes sometimes disappear:

1 It can be stolen

2 It can be vandalised, and the remnants cleaned up.

Let’s assume that p(gone|vandalised) = 1.
Questions:

What is p(gone|stolen)?

If you notice your bike is gone, what happens to the probability that
it was vandalised?

What about p(stolen|gone)?

Now suppose you learn that it was stolen. What happens to
p(vandalised|gone, stolen)?
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Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station.
At central station, there are two reasons why bikes sometimes disappear:

1 It can be stolen

2 It can be vandalised, and the remnants cleaned up.

Let’s assume that p(gone|vandalised) = 1.
Questions:

What is p(gone|stolen)? p(gone|stolen) = 1

If you notice your bike is gone, what happens to the probability that
it was vandalised?

What about p(stolen|gone)?

Now suppose you learn that it was stolen. What happens to
p(vandalised|gone, stolen)?
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Independence

Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station.
At central station, there are two reasons why bikes sometimes disappear:

1 It can be stolen

2 It can be vandalised, and the remnants cleaned up.

Let’s assume that p(gone|vandalised) = 1.
Questions:

What is p(gone|stolen)? p(gone|stolen) = 1

If you notice your bike is gone, what happens to the probability that
it was vandalised? increases

What about p(stolen|gone)?

Now suppose you learn that it was stolen. What happens to
p(vandalised|gone, stolen)?
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Independence

Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station.
At central station, there are two reasons why bikes sometimes disappear:

1 It can be stolen

2 It can be vandalised, and the remnants cleaned up.

Let’s assume that p(gone|vandalised) = 1.
Questions:

What is p(gone|stolen)? p(gone|stolen) = 1

If you notice your bike is gone, what happens to the probability that
it was vandalised? increases

What about p(stolen|gone)? also increases

Now suppose you learn that it was stolen. What happens to
p(vandalised|gone, stolen)?
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Independence

Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station.
At central station, there are two reasons why bikes sometimes disappear:

1 It can be stolen

2 It can be vandalised, and the remnants cleaned up.

Let’s assume that p(gone|vandalised) = 1.
Questions:

What is p(gone|stolen)? p(gone|stolen) = 1

If you notice your bike is gone, what happens to the probability that
it was vandalised? increases

What about p(stolen|gone)? also increases

Now suppose you learn that it was stolen. What happens to
p(vandalised|gone, stolen)? decreases
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D-separation

Independence in Bayes Nets

Detecting (conditional) independencies in the factorisation of a joint
distribution is not easy.

Independence of nodes in a graph can be found mechanically by
operations on the graph

For the set of nodes A,B and C ,

A⊥⊥B | C if all the paths from A to B are blocked.

A path is blocked at a node when (d-separation)

edges meet head-to-tail (−→©−→) or tail-to-tail (←−©−→) at a
node which is in the observed set C ,
edges meet head-to-head (−→©←−) at a node which is not in C ,
and none of whose descendents is in the observed set C .
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D-separation

D-separation

E

A

C

F

B E

A

C

F

B

A path is blocked at a node when (D-separation)

edges meet head-to-tail (−→©−→) or tail-to-tail (←−©−→) in an
observed node,

edges meet head-to-head (−→©←−) and the node nor any of its
descendents is observed.
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D-separation

Markov Blanket
The Markov blanket of a node xi :

minimal set of nodes that “shield” the node xi from the rest of the
graph

Set of nodes, given which xi is independent from any other node in
the graph

For directed graphical models: set of parents, children and
co-parents of the node

xi
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D-separation

BayesNet Toolbox example

Example

Example illustrating D-separation
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Independence properties

The Basics

Undirected graphical models are also knows as Markov Random
Fields or Markov networks

Each node corresponds to a variable or a group of variables

Edges denote relationships between variables
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Independence properties

Independence in MRFs

We start by the independences a MRF represents, because they are
easy to define

Once more, for the set of nodes A,B and C , A⊥⊥B | C if all the
paths from A to B are blocked.

A path from A to B is blocked when one of the path nodes belongs
to set C
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Independence properties

Independence in MRFs

A

C
B

An example where A⊥⊥B | C in an undirected graph

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Bayesian Networks Markov Random Fields Factor Graphs Summing up Inference

Independence properties

Markov blanket

The Markov blanket of a (set of) nodes:

Minimal set of nodes given which the nodes are independent of the
rest of the graph

No “explaining away”

Markov blanket: set of neighbouring nodes
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Independence properties

Example

x1

x2

x3

x4

In this example we see nodes x = x1, . . . , x4

Independence between two nodes xi and xj
corresponds to:

p(xi , xj |x\i,j) = p(xi |x\i,j)p(xj |x\i,j)

where x\i,j represents all the nodes in x except xi
and xj

Clique is a subset of a graph such that there exists a link between all
pairs of nodes of the graph

Maximal Clique is a subset of a graph such that no other node can
be added without it ceasing to be a clique
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Factorisation

Factorisation in a MRF

The joint distribution of all the graph nodes can be written as a product
of potential functions, each associated with a clique

p(x) =
1

Z

∏
C

ψC (xC )

where xC are the nodes of the subset of clique C , and Z the
normalisation constant, usually called partition function, given by:

Z =
∑
x

∏
C

ψC (xC )
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Factorisation

Potential Functions

They are non-negative

They do not require a specific probabilistic interpretation

That’s why we need an explicit normalisation term, which is
sometimes intractable to compute!

Comparison of different variable settings is easy

Objective evaluation of a particular setting hard

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Bayesian Networks Markov Random Fields Factor Graphs Summing up Inference

Factorisation

Image Denoising

Example

xi

yi

We represent the problem of image denoising with an undirected
graphical model. Nodes yi represent observed pixel values, while
nodes xi represent the uknowns and are the true pixel value in a
noise-free image.

Which are the maximal cliques of this model?
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Factorisation

Energy Function

Example

The nodes are binary and can take values −1 or +1

We set η as the potential of each clique {xi , yi}
We set β as the potential of each clique {xi , xj}
We use h to bias the model towards pixel values of a specific sign

Energy function:

E (x, y) = h
∑
i

xi − β
∑
{i,j}

xixj − η
∑
i

xiyj

Potentials:

p(x, y) =
1

Z
exp(h

∑
i

xi − β
∑
{i,j}

xixj − η
∑
i

xiyj)

=
1

Z
ψ1(x)h ψ2(x)−β ψ3(x, y)−η
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Factorisation

Energy Function

Example

The nodes are binary and can take values −1 or +1

We set η as the potential of each clique {xi , yi}
We set β as the potential of each clique {xi , xj}
We use h to bias the model towards pixel values of a specific sign

Energy function:

E (x, y) = h
∑
i

xi − β
∑
{i,j}

xixj − η
∑
i

xiyj

Potentials:

p(x, y) =
1

Z
exp(h

∑
i

xi − β
∑
{i,j}

xixj − η
∑
i

xiyj)

=
1

Z
ψ1(x)h ψ2(x)−β ψ3(x, y)−η
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Factorisation

Energy Function

Example

The nodes are binary and can take values −1 or +1

We set η as the potential of each clique {xi , yi}
We set β as the potential of each clique {xi , xj}
We use h to bias the model towards pixel values of a specific sign

Energy function:

E (x, y) = h
∑
i

xi − β
∑
{i,j}

xixj − η
∑
i

xiyj

Potentials:

p(x, y) =
1

Z
exp(h

∑
i

xi − β
∑
{i,j}

xixj − η
∑
i

xiyj)

=
1

Z
ψ1(x)h ψ2(x)−β ψ3(x, y)−η
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Factorisation

Inference

Example: Iterated conditional modes

We would like to infer the value of the variables xi .

We initially set xi = yi

We observe each variable independently

We change its value if this would increase the total configuration
probability

We stop once we have iterated over all the variables without any
value change

This will converge to a local optimum in the configuration space
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Factorisation

Inference

Example: Iterated conditional modes

We would like to infer the value of the variables xi .

We initially set xi = yi

We observe each variable independently

We change its value if this would increase the total configuration
probability

We stop once we have iterated over all the variables without any
value change

This will converge to a local optimum in the configuration space
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Factorisation

Inference

Example: Iterated conditional modes

We would like to infer the value of the variables xi .

We initially set xi = yi

We observe each variable independently

We change its value if this would increase the total configuration
probability

We stop once we have iterated over all the variables without any
value change

This will converge to a local optimum in the configuration space
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The basics

A factor graph

x1 x2 x3

fa fb fc fd

In this example we see nodes x = x1, . . . , x3

The joint distribution will be factored as:

p(x1, x2, x3) = fa(x1, x2) fb(x1, x2) fc(x2, x3) fd(x3)

Which of these factors would be grouped together in an undirected
graph?

Does this provide more or less expressive power?
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Conversions

Undirected to Factor graph

Example

x1 x2

x3

x1 x2

x3

f x1 x2

x3

fa

fb
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Conversions

Directed to Factor graph

Example

x1 x2

x3

x1 x2

x3

f x1 x2

x3

fc

fa fb
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Graphical models as filters

Graphical models as filters

p(x) DF

Let p(x) be the set of all possible distributions over the variables at
hand

Each graphical model is a filter for these distributions

Allowing only distributions that satisfy the appropriate factorisations
go through
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Bayesian nets vs. Markov Random Fields vs. Factor Graphs

BN vs. MRF vs. FG

P
UD

Some factorisations can be expressed with a directed or undirected
graph

Some can only be expressed with one of the two conventions

The factor graphs can express any kind of factorisation
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The sum-product algorithm

The sum-product algorithm

The sum-product algorithm

evaluates the local marginals over nodes or sets of nodes

will be presented for discrete nodes. In the continuous case the sums
become integrals

is a more general case of an algorithm known as belief propagation

is applicable on trees
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The sum-product algorithm

Independence to simplify inference

A B C

If our variables are binary, the marginal p(B) is:

p(B) = p(a,B, c) + p(a,B,¬c) + p(¬a,B, c) + p(¬a,B,¬c)

However, from our factorisation, we can simplify this as:

p(B) = p(a) p(B|a) [p(c |B) + p(¬c |B)] + p(¬a) p(B|¬a) [p(c |B) + p(¬c |B)]

= [p(a) p(B|a) + p(¬a) p(B|¬a)] [p(c |B) + p(¬c |B)]

where we used that (ab + ac) = a(b + c)
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The sum-product algorithm

Estimating p(x)

From the rules of probability

p(x) =
∑
x\x

p(x)

which under a factor graph becomes

p(x) =
∑
x\x

∏
s

fs(xs) =
∑
x\x

∏
s∈ne(x)

Fs(x ,Xs) (3)

where ne(x) are the set of factor nodes that are neighbours of x
Essentially, we would like to explore the structure of the graph to

obtain and efficient exact algorithm to obtain marginals

in case we need several marginals, share the computations efficiently
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The sum-product algorithm

Factor-to-node message

xfs

µfs→x(x)

F
s
(x

,X
s
)

We can substitute sums and products in eq 3:

p(x) =
∏

s∈ne(x)

[∑
Xs

Fs(x ,Xs)

]
=

∏
s∈ne(x)

µfs→x(x)

where µfs→x(x) can be viewed as a message from the factor node fs to
the variable xIASIntelligent Autonomous Systems
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The sum-product algorithm

Message evaluation

Each message µfs→x(x) can be evaluated as:

µfs→x(x) =
∑
Xs

Fs(x ,Xs) (4)

Each factor Fs(x ,Xs) is described by a new factor (sub-)graph where:

Fs(x ,Xs) = fs(x , x1, x2, . . . , xM)G1(x1,Xs1 ) · · ·GM(xM ,XsM ) (5)

where x1 . . . xM denote all the variables associated with fx but x .
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The sum-product algorithm

Node-to-factor Message

Substituting equation 5 in 4, we obtain:

µfs→x(x) =
∑
x1

· · ·
∑
xM

fs(x , x1, . . . , xM)
∏

m∈ne(fs )\x

[∑
Xsm

Gm(xm,Xsm)

]

=
∑
x1

· · ·
∑
xM

fs(x , x1, . . . , xM)
∏

m∈ne(fs )\x

µxm→fs (xm)

where µxm→fs (xm) can be viewed as a message from the variable x to the
factor nodes fs
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The sum-product algorithm

Message evaluation

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

In this case, µxm→fs (xm) is given by

µxm→fs (xm) =
∑
xsm

Gm(xm,Xsm) (6)

with

Gm(xm,Xsm) =
∏

l∈ne(xm)\fs

Fl(xm,Xml)

If we substitute this in 6, we get

µxm→fs (xm) =
∏

l∈ne(xm)\fs

[∑
xsm

Fl(xm,Xml)

]

=
∏

l∈ne(xm)\fs

µfl→xm(xm)
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The sum-product algorithm

The algorithm

x
f

µx→f (x) = 1

x
f

µf→x(x) = f (x)

We see node x whose marginal we are after as the root of a tree

We start with messages from the leaves of the tree, 1 for nodes,
f (x) for factors

We compute the marginal when node x receives all the incoming
messages
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The sum-product algorithm

Example: Going to class

A

B

C

D
A Attending class
B Broken Bike
C Consumption (of lo-

cal products)
D Despair (about suc-

ceeding for the class)
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The sum-product algorithm

Example: Going to class

A

B

C

D

Probabilities:

p(a|b, c) = 0 p(b) =
1

12

p(a|b,¬c) = 1

4
p(c) =

1

3

p(a|¬b, c) = 1

2
p(d |a) = 0

p(a|¬b,¬c) = 1 p(d |¬a) = 3

4
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The sum-product algorithm

Example: Going to class

A

B

C

D fa

fbfc
fd

fa(B) = p(B)

fb(C ) = p(C )

fc(A,B,C ) = p(A|B,C )

fd(A,D) = p(D|A)
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The sum-product algorithm

Example: Going to class

A

B

C

D fa

fbfc
fdµ1(D)

µ2(B)

µ3(C)

µ1(D) =

[
1
1

]
µ2(B) =

[
p(b)
p(¬b)

]
=

[
1

12
11
12

]
µ3(C ) =

[
p(c)
p(¬c)

]
=

[
1
3
2
3

]
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The sum-product algorithm

Example: Going to class

A

B

C

D fa

fbfc
fdµ1(D)

µ2(B)

µ3(C)
µ4(A)

µ5(B)

µ6(C)

µ4(A) =

[
1p(d |a) + 1p(¬d |a)

1p(d |¬a) + 1p(¬d |¬a)

]
=

[
1
1

]
µ5(B) =

[
p(b)
p(¬b)

]
=

[
1

12
11
12

]
µ6(C ) =

[
p(c)
p(¬c)

]
=

[
1
3
2
3

]
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The sum-product algorithm

Example: Going to class

A

B

C

D fa

fbfc
fdµ1(D)

µ2(B)

µ3(C)
µ4(A)

µ5(B)

µ6(C)

µ7(A)

µ7(A) =

[
p(b)p(c)p(a|b, c) + · · ·+ p(¬b)p(¬c)p(a|¬b,¬c)

p(b)p(c)p(¬a|b, c) + · · ·+ p(¬b)p(¬c)p(¬a|¬b,¬c)

]
=

[
1

12
1
3
0 + 1

12
2
3

1
4
+ 11

12
1
3

1
2
+ 11

12
2
3
1

1
12

1
3
1 + 1

12
2
3

3
4
+ 11

12
1
3

1
2
+ 11

12
2
3
0

]
=

[
2

144
+ 22

144
+ 88

144
4

144
+ 6

144
+ 22

144

]
=

[
112
144
32

144

]
=

[
7
9
2
9

]
=

[
p(a)
p(¬a)

]



Introduction Bayesian Networks Markov Random Fields Factor Graphs Summing up Inference

The sum-product algorithm

Example: Going to class

A

B

C

D fa

fbfc
fdµ1(D)

µ2(B)

µ3(C)
µ4(A)

µ5(B)

µ6(C)

µ7(A)

We can now compute the marginal probability at A:

µ4(A)µ7(A) =

[
1
1

] [
p(a)
p(¬a)

]
=

[
7
9
2
9

]
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The sum-product algorithm

Example: Going to class

A

B

C

D fa

fbfc
fdµ1(D)

µ2(B)

µ3(C)
µ4(A)

µ5(B)

µ6(C)

µ7(A)
µ8(A)

µ9(A)

µ8(A) =

[
1
1

]
µ9(A) =

[
p(a)
p(¬a)

]
=

[
7
9
2
9

]
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The sum-product algorithm

Example: Going to class

A

B

C

D fa

fbfc
fdµ1(D)

µ2(B)

µ3(C)
µ4(A)

µ5(B)

µ6(C)

µ7(A)
µ8(A)

µ9(A)

µ10(D)

µ11(B)

µ12(C)

µ10(D) =

[
p(a) p(d |a) + p(¬a) p(d |¬a)

p(a) p(¬d |a) + p(¬a) p(¬d |¬a)

]
=

[
p(d)
p(¬d)

]
=

[
7
9
0 + 2

9
3
4

7
9
1 + 2

9
1
4

]
=

[
1
6
5
6

]
µ11(B) =

[
p(a|b, c)p(c) + · · ·+ p(¬a|b,¬c)p(¬c)

p(a|¬b, c)p(c) + · · ·+ p(¬a|¬b,¬c)p(¬c)

]
=

[
1
1

]
µ12(C) =

[
1
1

]
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The sum-product algorithm

Marginal over all nodes

x1 x2 x3

x4

x1 x2 x3

x4

We can run the algorithm for each node independently

In order to save time on computations we can have a full run over
the whole factor graph
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The max-sum algorithm

The max-sum algorithm

The most likely state of the system is not necessarily the state where all
variables have their most likely state.

We would like to acquire the most probable variable settings
combination for our model.

What would we acquire if we run the sum-product algorithm for
each node of the graph, and set its value to

x∗ = arg max
x

p(x)

The max-sum algorithm estimates the node values that jointly have
the highest probability! That is:

x∗ = arg max
x

p(x)
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The max-sum algorithm

Maximising p(x)

We first write out the max operator in terms of its components:

max
x

p(x) = max
x1

p(x)maxx2p(x) · · ·maxxMp(x)

which, given the factorisation provided by the factor graph and
exchanging max operators and products becomes:

max
x

p(x) =
1

Z
max
x1

∏
s∈ne(x1)

Fs(x1,Xs) · · ·max
xM

∏
s∈ne(xM )

Fs(xM ,Xs)

with all the terms having similar for to the sum-product algorithm
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The max-sum algorithm

max-sum messages

The messages to find the value of a node at the optimal joint
configuration are:

µf→x = max
x1,x2,...,xM

ln f (x , x1, . . . , xM) +
∑

m∈ne(fs )\x

µxm→f (xm)


where

µx→f (x) =
∑

l∈ne(x)\f

µfl→x(x)

Note the use of the logarithm to avoid computations with extremely
small values! The products turn into sums, but the maximum remains.
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The max-sum algorithm

The max-sum algorithm I

With initialisations:

µx→f (x) = 0 and µf→x(x) = ln f (x)

at the root node we can compute the maximum probability as:

pmax = max
x

 ∑
s∈ne(x)

µfs→x(x)


and the node’s value as:

xmax = arg max
x

 ∑
s∈ne(x)

µfs→x(x)
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The max-sum algorithm

The max-sum algorithm II

Obtaining xmax is not straightforward!

If we just propagate messages back, individual x∗ might correspond
to different configuration values

Instead we save these values as

φ(xn) = arg max
xn−1

[
ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(x)

]
and then, when we have reached the root node

xmax
n−1 = φ(xmax

n )
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The max-sum algorithm

Incorporating evidence

How can we incorporate observations in the computation?

The sum-product algorithm marginalises over all nodes in the graph

The sum is taken over all possible values for each variable

In order to include observations (Evidence), we want to compute the
factors for the observed values only

Include an extra factor to the observed variables, that is one for the
observed value and zero otherwise
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The max-sum algorithm

Wrap-up

Graphical models provide a simple way to visualise the structure of a
probabilistic model and complex computations can be expressed in
terms of graphical manipulations.

We saw a general algorithm to perform inference in factor graphs

Reading: Bishop chapter 8 (8.1.(1,2,4), 8.4.(1,2))

Stay tuned, next week we will see how to learn the parameters of our
Graphical Model!
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