Introduction 00000	Linear Perceptron	Fisher's Linear Discriminant 0000	Probabilistic Models	Basis Functions 000

Lecture 3 Linear Discriminants

University of Amsterdam

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions

- 2 Linear Perceptron• Motivation
- Fisher's Linear Discriminant
 Optimising class separation
- Probabilistic Models
 - Generative Probabilistic Models
 - Discriminative Probabilistic Models

5 Basis Functions

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models 0000000	Basis Functions 000

- 2 Linear Perceptron• Motivation
- Fisher's Linear Discriminant
 Optimising class separation
- Probabilistic Models
 - Generative Probabilistic Models
 - Discriminative Probabilistic Models

Basis Functions

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
00000				
Linear Discrimina	nts			

Linear Discriminants

Example: Two Class problem

XX UNIVERSITY OF AMSTERDAM

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
00000	00000	0000	0000000	000
Linear Discriminant	:S			
Linear D	iscriminants	:		×
		,		×

Two-class classification problem:

• Obtain the class labels as a function of the features

$$f(\mathbf{x}) = \begin{cases} \mathcal{C}_0 & \text{if } y(\mathbf{x}) > 0\\ \mathcal{C}_1 & \text{if } y(\mathbf{x}) < 0 \end{cases}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Discriminant: $y(\mathbf{x}) = 0$
- Linear classification: $y(\mathbf{x}) = 0$ is a linear function of \mathbf{x}

Introd 0000	uction Linea	ar Perceptron 00	Fisher's Linear Discri 0000	Probabilistic Mo	dels	Basis Functions 000
Linear	Discriminants					
Lir	near Discr	riminants				×
	Example ,	× 0 0 0 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×		 *		University of Amsterdam

ж

x₁

Introduc 00●00	ction Li o	near Perceptron 0000	Fisher's Linear Discriminant 0000	Probabilistic Models 0000000	Basis Functions 000
Linear D	Discriminants				
Line	ear Disc	criminants			× ×
C	Example				UNIVERS
	y(x)				SITY OF AMSTERDAM

x₁

Intelligent Autonomous Systems

x₂

Introduction 000●0	Linear Perceptron	Fisher's Linear Discriminant 0000	Probabilistic Models 0000000	Basis Functions
Linear Discriminan	ts			
Represer	ntation of th	ne linear discrimir	nant	Š

$$y(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_0$$

$$y = 0$$

$$y = 0$$

$$R_2$$

$$\mathbf{x}_{\perp}$$

$$\mathbf{x}_{\perp}$$

$$\frac{y(\mathbf{x})}{\|\mathbf{w}\|}$$

• Slope is determined by \mathbf{w} , offset from origin by w_0

۲

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
00000				
Linear Discriminar	its			
-				×

Ň

UNIVERSITY OF AMSTERDAM

Representation

• For convenience $\tilde{\mathbf{w}}^{\top} = (w_0, w_1, \cdots w_D)$ $\tilde{\mathbf{x}}^{\top} = (1, x_1, \cdots, x_D)$ so that $y(\mathbf{x}) = \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}$

- Hyperplane equation becomes $\tilde{\boldsymbol{w}}^{\top}\tilde{\boldsymbol{x}}=\boldsymbol{0}$
- Generalisation to k classes:
 - Combine multiple 2-class classifiers
 - Beware of ambiguous regions

Question

How do we determine **w**?

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
00000				
Linear Discriminar	its			
-				×

Representation

• For convenience $\tilde{\mathbf{w}}^{\top} = (w_0, w_1, \cdots w_D)$ $\tilde{\mathbf{x}}^{\top} = (1, x_1, \cdots, x_D)$ so that $y(\mathbf{x}) = \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}$

- Hyperplane equation becomes $\tilde{\boldsymbol{w}}^{\top}\tilde{\boldsymbol{x}}=\boldsymbol{0}$
- Generalisation to k classes:
 - Combine multiple 2-class classifiers
 - Beware of ambiguous regions

Question

How do we determine w?

Intelligent Autonomous Systems

Ň×

Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions

- 2 Linear Perceptron• Motivation
- Fisher's Linear Discriminant
 Optimising class separation
- Probabilistic Models
 - Generative Probabilistic Models
 - Discriminative Probabilistic Models

Basis Functions

Introduction 00000	Linear Perceptron •0000	Fisher's Linear Discriminant 0000	Probabilistic Models 0000000	Basis Functions 000
Motivation				
Linear F	Perceptron			×××
				Ģ

- Inspired by the brain
- Model of neurons:
 - Binary signals (transmit / don't transmit)
 - Multiple inputs, one output
 - Send a signal to the output if inputs are sufficiently activated
- Activation:

$$y(\mathbf{x}) = f(\mathbf{w}^{\top}\mathbf{x})$$
, where $f(a) = egin{cases} +1 & ext{if } a > 0 \ -1 & ext{otherwise} \end{cases}$ (2)

is a (non-linear) step function.

• Training data set $\{\mathbf{x}_n, t_n\}$ uses the target coding scheme:

$$t_n = \begin{cases} +1 & \text{if } \mathbf{x}_n \text{ belongs to } \mathcal{C}_1 \\ -1 & \text{otherwise} \end{cases}$$
(3)

(日)、

-

IVERSITY OF AMSTERDAM

Intelligent Autonomous Systems

	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
	0000			
Motivation				

Training the Linear Perceptron

• Classification is correct iff:

- $t_n > 0$ and $\mathbf{w}^\top \mathbf{x} > 0$ (because then $f(\mathbf{w}^\top \mathbf{x}) > 0$), or
- $t_n < 0$ and $\mathbf{w}^\top \mathbf{x} < 0$

Therefore, classification is correct if

$$\mathbf{w}^{\top}\mathbf{x}_n t_n > 0 \tag{4}$$

• We want to minimise the misclassification rate

$$E(\mathbf{w}) = -\sum_{n \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_n t_n$$
(5)

where $\mathcal{M} = {\mathbf{x}_i | \mathbf{w}^\top \mathbf{x}_i t_i < 0}$ is the set of misclassified samples.

Intelligent Autonomous Systems

ž

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
Motivation				

Perceptron Training Algorithm

• Update w by stochastic gradient descent:

$$\mathbf{w}^{(i)} = \mathbf{w}^{(i-1)} - \eta \nabla E(\mathbf{w}^{(i-1)})$$
(6)

$$= \mathbf{w}^{(i-1)} + \eta \mathbf{x}_n t_n \tag{7}$$

- Training algorithm: cycle through the training patterns and if misclassified, update w
- This was revolutionary, because it seemed plausible that neurons could really work like this
- Perceptron Convergence Theorem: If the training set is linearly separable, the algorithm is guaranteed to find a solution in a finite number of steps.

Intelligent Autonomous Systems

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
Motivation				

Problems with perceptrons

- Training is slow, and does not generalise easily to more than 2 classes
- As long as the algorithm hasn't converged, there is no way to know whether the problem is not linearly separable, or just slow to converge.
- Because the set of misclassified training examples changes at each weight update, the algorithm is not guaranteed to reduce the overall error at each step. If the data is not linearly separable, no particularly good solution may be found.
- In general, many solutions exist and the final solution depends on the initial conditions, not on some optimality criterion.

Intelligent Autonomous Systems

ž

Introduction 00000	Linear Perceptron 0000●	Fisher's Linear Discriminant 0000	Probabilistic Models 0000000	Basis Functions 000
Motivation				
Problem	s with perce	eptrons		× X
Examı	ole		*	University of Amsterdam

Example

Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions

- 2 Linear Perceptron• Motivation
- Fisher's Linear Discriminant
 Optimising class separation
- Probabilistic Models
 - Generative Probabilistic Models
 - Discriminative Probabilistic Models

5 Basis Functions

UNIVERSITY OF AMSTERDAM

Fisher's Linear Discriminant

• Linear classification can be seen as dimensionality reduction:

$$y(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$$
 (8)

projects the D-dimensional vector \mathbf{x} to 1 dimension

- This results in loss of information; classes which are easily separable in *D* dimensions may strongly overlap in 1 dimension.
- Determine **w** so as to obtain a projection that maximises the class separation.

Measuring class separation

- Maximise distance between the projected class means
- Minimise variance within the projected classes

Introduction	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
00000	00000	0000	0000000	000
Optimising class	separation			
				× 1

Measuring class separation

- Maximise distance between the projected class means
- Minimise variance within the projected classes

Ň

Introduction 00000	Linear Perceptron	Fisher's Linear Discriminant 00●0	Probabilistic Models	Basis Functions
Optimising class sepa	aration			

Optimising class separation

• The class means are given by:

$$\mathbf{m}_{k} = \frac{1}{N_{k}} \sum_{n \in \mathcal{C}_{k}} \mathbf{x}_{n}$$
(9)

INIVERSITY OF AMSTERDAM

- Projected on **w**, this gives: $m_k = \mathbf{w}^\top \mathbf{m}_k$, so (for a 2-class problem) we want to maximise $(m_2 m_1)^2$
- Simultaneously we want to minimise the variance within the projected classes:

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (\mathbf{w}^\top \mathbf{x} - m_k)^2$$
(10)

Fisher's discriminant combines these as follows:

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$
(11)

Intelligent Autonomous Systems

Introduction 00000	Linear Perceptron 00000	Fisher's Linear Discriminant 000●	Probabilistic Models 0000000	Basis Functions
Optimising class	separation			
Finding	the optimal	w		ě

• We can express $J(\mathbf{w})$ in terms of \mathbf{w} :

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} \mathbf{S}_B \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_W \mathbf{w}}$$
(12)

where

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^\top$$
$$\mathbf{S}_W = \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1)(\mathbf{x}_n - \mathbf{m}_1)^\top + \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^\top$$

• $J(\mathbf{w})$ is maximised when:

$$\mathbf{w} = \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1) \tag{13}$$

Intelligent Autonomous Systems

Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions

- 2 Linear Perceptron• Motivation
- Fisher's Linear Discriminant
 Optimising class separation
- Probabilistic Models
 - Generative Probabilistic Models
 - Discriminative Probabilistic Models

5 Basis Functions

 Introduction
 Linear Perceptron
 Fisher's Linear Discriminant
 Probabilistic Models
 Basis Functions

 00000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Generative Probabilistic Models

- Generative Probabilistic Models learn the distribution of the data, p(x|C)
- This can be used for classification, using Bayes' rule:

$$p(\mathcal{C}_i|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_i)p(\mathcal{C}_i)}{\sum_k p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}$$
(14)

- If we learn the correct distributions, this is optimal: as the number of data points $\to \infty$, any other classifier will perform at most as well
- For certain distributions, the generative probabilistic model results in linear classification

Intelligent Autonomous Systems

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Introduction Linear Perceptron Fisher's Linear Discriminant Probabilistic Models Basis Functions

• If we assume normal conditional densities:

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{\frac{d}{2}} |\mathbf{\Sigma}_k|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^\top \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right]$$
(15)

• Classify \mathbf{x} as \mathcal{C}_k if

 $p(\mathcal{C}_k|\mathbf{x}) > p(\mathcal{C}_j|\mathbf{x}), \quad \forall j \neq k \quad (16)$

The discriminant is then given by

$$p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k) = p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)$$
(17)
$$\ln p(\mathbf{x}|\mathcal{C}_k) + \ln p(\mathcal{C}_k) = \ln p(\mathbf{x}|\mathcal{C}_j) + \ln p(\mathcal{C}_j)$$
(18)

Intelligent Autonomous Systems

 Introduction
 Linear Perceptron
 Fisher's Linear Discriminant
 Probabilistic Models
 Basis Functions

 00000
 00000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Discriminants of Normal Densities

Log posterior of the Normal density:

$$\ln y_k(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) - \frac{d}{2} \ln \pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_k| + \ln p(\mathcal{C}_k)$$
$$= \underbrace{-\frac{1}{2} \mathbf{x}^\top \boldsymbol{\Sigma}_k^{-1} \mathbf{x}}_{\text{Quadratic}} + \underbrace{\mathbf{x}^\top \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k}_{\text{Linear}} + \underbrace{\mathbf{w}_{0,k}}_{\text{Constant}}$$

Discriminant $y_k(\mathbf{x}) = y_j(\mathbf{x})$:

$$-\frac{1}{2}\mathbf{x}^{\top}\boldsymbol{\Sigma}_{k}^{-1}\mathbf{x} + \mathbf{x}^{\top}\boldsymbol{\Sigma}_{k}^{-1}\boldsymbol{\mu}_{k} + w_{0,k} = -\frac{1}{2}\mathbf{x}^{\top}\boldsymbol{\Sigma}_{j}^{-1}\mathbf{x} + \mathbf{x}^{\top}\boldsymbol{\Sigma}_{j}^{-1}\boldsymbol{\mu}_{j} + w_{0,j}$$

In general, this is a quadratic function of ${\boldsymbol x}$

Intelligent Autonomous Systems

Ř

Linear Discriminants with Normal conditional densities

Special case: $\Sigma_k = \Sigma_i$ • $\mathbf{x}^{\top} \mathbf{\Sigma}_{k}^{-1} \mathbf{x} = \mathbf{x}^{\top} \mathbf{\Sigma}_{i}^{-1} \mathbf{x}$ cancels out on both sides of the equation • But if $\mu_k \neq \mu_i$, $\mathbf{x}^\top \mathbf{\Sigma}_k^{-1} \mu_k \neq \mathbf{x}^\top \mathbf{\Sigma}_i^{-1} \mu_i$ does not cancel out.

Introduction 00000	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions 000
Discriminative Probabilistic Models				

Discriminative Probabilistic Models

The posterior distribution $p(C_k|\mathbf{x})$ for a two-class problem can be written as a sigmoid $\sigma(a) = \frac{1}{1+e^{-a}}$:

Ř

Introduction 00000	Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
Discriminative Proba	bilistic Models			

Discriminative Probabilistic Models

The posterior distribution $p(C_k|\mathbf{x})$ for a two-class problem can be written as a sigmoid $\sigma(\mathbf{a}) = \frac{1}{1+e^{-a}}$:

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
(19)

$$=\frac{1}{1+\frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}}$$
(20)

UNIVERSITY OF AMSTERDAM

$$= \sigma(a) \text{ where } a = -\ln \frac{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}$$
(21)

For k classes, the posterior is the softmax function

$$p(\mathcal{C}_k | \mathbf{x}) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$
(22)

Intelligent Autonomous Systems

tion Linear Perceptron

Fisher's Linear Discriminant

Probabilistic Models

Basis Functions

Ř

UNIVERSITY OF AMSTERDAM

Discriminative Probabilistic Models

Generative vs. Discriminative

Generative models learn the distribution of the data:

- You can sample from them and generate new data
- Use Bayes' rule to obtain posterior probabilities
- Classification is optimal if the true distributions are known

Discriminative models directly optimise $p(C_k|\mathbf{x}) = \sigma(a)$

- In the case of Normal distributions p(x|C_i) with shared covariances, a is a linear function of x
- However this can be relaxed: a is a linear function of x for many distributions of x
- Directly optimising $p(C_k|\mathbf{x})$ typically requires fewer parameters to be adapted

IAS Intelligent Autonomous Systems

Introduction 00000	Linear Perceptron	Fisher's Linear Discriminant 0000	Probabilistic Models ○○○○○○●	Basis Functions 000
Discriminative P	robabilistic Models			
logistic	Regression			×

If we write the posterior probability as:

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^\top \mathbf{x}) \tag{23}$$

$$p(\mathcal{C}_2|\mathbf{x}) = 1 - p(\mathcal{C}_1|\mathbf{x})$$
(24)

How do we obtain w?

- Maximum Likelihood Maximise $p(C_i | \mathbf{x})$ for all C_i
- No closed-form solution: iterative algorithm
 - Gradient descent (useful fact: $\frac{d}{da}\sigma(a) = \sigma(a)(1 \sigma(a)))$
 - Newton-Raphson method: Iterative Reweighted Least Squares
- We will have a closer look at IRLS in the lab session.

Intelligent Autonomous Systems

Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions

- 2 Linear Perceptron• Motivation
- Fisher's Linear Discriminant
 Optimising class separation
- Probabilistic Models
 - Generative Probabilistic Models
 - Discriminative Probabilistic Models

5 Basis Functions

Non-linear Basis Functions

Linear models are by definition restricted: it is easy to find datasets that are not linearly separable.

However Linear classifiers have quite appealing characteristics:

- Easy to train and use
- $\bullet\,$ Few adjustable parameters $\rightarrow\,$ less prone to overfitting

We can keep the advantages of the classifiers and extend them to non-linear problems by transforming the features:

$$\mathbf{x} \to \phi(\mathbf{x})$$
 (25)

$$\mathbf{w}^{\top}\mathbf{x} \to \mathbf{w}^{\top}\phi(\mathbf{x})$$
 (26)

Using non-linear basis functions (and sometimes projecting the data into a higher number of dimensions) we can make complex data linearly separable.

Intelligent Autonomous Systems

Ř

Linear Perceptron	Fisher's Linear Discriminant	Probabilistic Models	Basis Functions
			000

Non-Linear Basis Functions

Transforming features x_1 and x_2 using "Gaussian" basis functions: $\phi_1 = f(\mathbf{x} - \boldsymbol{\mu}_1)$, where $\boldsymbol{\mu}_1 = (-1, -1)^{\top}$ and $\phi_2 = f(\mathbf{x} - \boldsymbol{\mu}_2)$, where $\boldsymbol{\mu}_2 = (0, 0)^{\top}$

Linear Perceptron	Fisher's Linear Discriminant	

Probabilistic Models

Today, we have seen:

- Linear discriminants
- Perceptron
- Fisher's linear discriminant
- Probabilistic motivation
- Discriminative linear models
- Basis functions

Exercise session

• Lagrange multipliers

- (Bishop, p. 181-182)
- (Bishop, p. 192-196)
- (Bishop, p. 186-189)
- (Bishop, p. 196–201)
- (Bishop, p. 205–206)
- (Bishop, p. 204-205)
- (Bishop, p. 707-710)

Ř

Intelligent Autonomous Systems