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Linear Discriminants

Linear Discriminants

Example: Two Class problem
x 2

x1
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Linear Discriminants

Linear Discriminants

Two-class classification problem:

Obtain the class labels as a function of the features

f (x) =

{
C0 if y(x) > 0

C1 if y(x) < 0
(1)

Discriminant: y(x) = 0

Linear classification: y(x) = 0 is a linear function of x
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Linear Discriminants

Linear Discriminants

Example

x1

x2

y(x)
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Linear Discriminants

Representation of the linear discriminant

y(x) = w>x + w0

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

Slope is determined by w, offset from origin by w0
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Linear Discriminants

Representation

For convenience w̃> = (w0,w1, · · ·wD)

x̃> = (1, x1, · · · , xD)

so that y(x) = w̃>x̃

Hyperplane equation becomes w̃>x̃ = 0

Generalisation to k classes:

Combine multiple 2-class classifiers
Beware of ambiguous regions

Question

How do we determine w?
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Motivation

Linear Perceptron

Inspired by the brain

Model of neurons:
Binary signals (transmit / don’t transmit)
Multiple inputs, one output
Send a signal to the output if inputs are sufficiently activated

Activation:

y(x) = f (w>x), where f (a) =

{
+1 if a > 0

−1 otherwise
(2)

is a (non-linear) step function.

Training data set {xn, tn} uses the target coding scheme:

tn =

{
+1 if xn belongs to C1
−1 otherwise

(3)
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Motivation

Training the Linear Perceptron

Classification is correct iff:

tn > 0 and w>x > 0 (because then f (w>x) > 0), or
tn < 0 and w>x < 0

Therefore, classification is correct if

w>xntn > 0 (4)

We want to minimise the misclassification rate

E (w) = −
∑
n∈M

w>xntn (5)

where M = {xi |w>xi ti < 0} is the set of misclassified
samples.
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Motivation

Perceptron Training Algorithm

Update w by stochastic gradient descent:

w(i) = w(i−1) − η∇E (w(i−1)) (6)

= w(i−1) + ηxntn (7)

Training algorithm: cycle through the training patterns and if
misclassified, update w

This was revolutionary, because it seemed plausible that
neurons could really work like this

Perceptron Convergence Theorem: If the training set is
linearly separable, the algorithm is guaranteed to find a
solution in a finite number of steps.
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Motivation

Problems with perceptrons

Training is slow, and does not generalise easily to more than 2
classes

As long as the algorithm hasn’t converged, there is no way to
know whether the problem is not linearly separable, or just
slow to converge.

Because the set of misclassified training examples changes at
each weight update, the algorithm is not guaranteed to reduce
the overall error at each step. If the data is not linearly
separable, no particularly good solution may be found.

In general, many solutions exist and the final solution depends
on the initial conditions, not on some optimality criterion.
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Motivation

Problems with perceptrons
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Optimising class separation

Fisher’s Linear Discriminant

Linear classification can be seen as dimensionality reduction:

y(x) = w>x (8)

projects the D-dimensional vector x to 1 dimension

This results in loss of information; classes which are easily
separable in D dimensions may strongly overlap in 1
dimension.

Determine w so as to obtain a projection that maximises the
class separation.
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Optimising class separation

Measuring class separation

Maximise distance between the projected class means

Minimise variance within the projected classes
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Optimising class separation

Optimising class separation

The class means are given by:

mk =
1

Nk

∑
n∈Ck

xn (9)

Projected on w, this gives: mk = w>mk , so (for a 2-class
problem) we want to maximise (m2 −m1)2

Simultaneously we want to minimise the variance within the
projected classes:

s2k =
∑
n∈Ck

(w>x−mk)2 (10)

Fisher’s discriminant combines these as follows:

J(w) =
(m2 −m1)2

s21 + s22
(11)
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Optimising class separation

Finding the optimal w

We can express J(w) in terms of w:

J(w) =
w>SBw

w>SW w
(12)

where

SB = (m2 −m1)(m2 −m1)>

SW =
∑
n∈C1

(xn −m1)(xn −m1)> +
∑
n∈C2

(xn −m2)(xn −m2)>

J(w) is maximised when:

w = S−1W (m2 −m1) (13)
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Generative Probabilistic Models

Generative Probabilistic Models

Generative Probabilistic Models learn the distribution of the
data, p(x|C)

This can be used for classification, using Bayes’ rule:

p(Ci |x) =
p(x|Ci )p(Ci )∑
k p(x|Ck)p(Ck)

(14)

If we learn the correct distributions, this is optimal: as the
number of data points →∞, any other classifier will perform
at most as well

For certain distributions, the generative probabilistic model
results in linear classification
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Generative Probabilistic Models

Discriminants of Normal Densities

If we assume normal conditional densities:

p(x|Ck) =
1

(2π)
d
2 |Σk |

1
2

exp

[
−1

2
(x− µk)>Σ−1k (x− µk)

]
(15)

Classify x as Ck if

p(Ck |x) > p(Cj |x), ∀j 6= k (16)

The discriminant is then given by

p(x|Ck)p(Ck) = p(x|Cj)p(Cj) (17)

ln p(x|Ck) + ln p(Ck) = ln p(x|Cj) + ln p(Cj) (18)
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Generative Probabilistic Models

Discriminants of Normal Densities

Log posterior of the Normal density:

ln yk(x) = −1

2
(x− µk)>Σ−1k (x− µk)− d

2
lnπ − 1

2
ln |Σk |+ ln p(Ck)

= −1

2
x>Σ−1k x︸ ︷︷ ︸

Quadratic

+ x>Σ−1k µk︸ ︷︷ ︸
Linear

+ w0,k︸︷︷︸
Constant

Discriminant yk(x) = yj(x):

−1

2
x>Σ−1k x + x>Σ−1k µk + w0,k = −1

2
x>Σ−1j x + x>Σ−1j µj + w0,j

In general, this is a quadratic function of x
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Generative Probabilistic Models

Linear Discriminants with Normal conditional densities

Special case: Σk = Σj

x>Σ−1k x = x>Σ−1j x cancels out on both sides of the equation

But if µk 6= µj , x>Σ−1k µk 6= x>Σ−1j µj does not cancel out.
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Discriminative Probabilistic Models

Discriminative Probabilistic Models

The posterior distribution p(Ck |x) for a two-class problem can be
written as a sigmoid σ(a) = 1

1+e−a :

-0.5

0

0.5

1

1.5

-15 -10 -5 0 5 10 15

σ(
a)

a
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Discriminative Probabilistic Models

Discriminative Probabilistic Models

The posterior distribution p(Ck |x) for a two-class problem can be
written as a sigmoid σ(a) = 1

1+e−a :

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
(19)

=
1

1 + p(x|C2)p(C2)
p(x|C1)p(C1)

(20)

= σ(a) where a = − ln
p(x|C2)p(C2)

p(x|C1)p(C1)
(21)

For k classes, the posterior is the softmax function

p(Ck |x) =
exp(ak)∑
j exp(aj)

(22)
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Discriminative Probabilistic Models

Generative vs. Discriminative

Generative models learn the distribution of the data:

You can sample from them and generate new data

Use Bayes’ rule to obtain posterior probabilities

Classification is optimal if the true distributions are known

Discriminative models directly optimise p(Ck |x) = σ(a)

In the case of Normal distributions p(x|Ci ) with shared
covariances, a is a linear function of x

However this can be relaxed: a is a linear function of x for
many distributions of x

Directly optimising p(Ck |x) typically requires fewer parameters
to be adapted
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Discriminative Probabilistic Models

Logistic Regression

If we write the posterior probability as:

p(C1|x) = σ(w>x) (23)

p(C2|x) = 1− p(C1|x) (24)

How do we obtain w?

Maximum Likelihood — Maximise p(Ci |x) for all Ci
No closed-form solution: iterative algorithm

Gradient descent (useful fact: d
daσ(a) = σ(a)(1− σ(a)))

Newton-Raphson method: Iterative Reweighted Least Squares

We will have a closer look at IRLS in the lab session.
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Non-linear Basis Functions

Linear models are by definition restricted: it is easy to find
datasets that are not linearly separable.
However Linear classifiers have quite appealing characteristics:

Easy to train and use

Few adjustable parameters → less prone to overfitting

We can keep the advantages of the classifiers and extend them to
non-linear problems by transforming the features:

x→ φ(x) (25)

w>x→ w>φ(x) (26)

Using non-linear basis functions (and sometimes projecting the
data into a higher number of dimensions) we can make complex
data linearly separable.
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Non-Linear Basis Functions

Transforming features x1 and x2 using “Gaussian” basis functions:
φ1 = f (x− µ1), where µ1 = (−1,−1)> and φ2 = f (x− µ2),
where µ2 = (0, 0)>

���

���

−1 0 1
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Wrap-up

Today, we have seen:

Linear discriminants (Bishop, p. 181–182)

Perceptron (Bishop, p. 192–196)

Fisher’s linear discriminant (Bishop, p. 186–189)

Probabilistic motivation (Bishop, p. 196–201)

Discriminative linear models (Bishop, p. 205–206)

Basis functions (Bishop, p. 204–205)

Exercise session

Lagrange multipliers (Bishop, p. 707–710)
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