Training	Overfitting	Optimising Data Usage	

Lecture 2 Training and Testing

University of Amsterdam

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Training	Overfitting	Optimising Data Usage	

Training

k-Nearest-Neighbours

2 Evaluation

- Error measures: classification
- Decision threshold
- Error measures: regression

Overfitting

- Introduction
- Regularisation
- Maximum a Posteriori
- Bayesian learning
- Optimising Data Usage
 - Cross-validation

Training	Overfitting	Optimising Data Usage	

Trainingk-Nearest-Neighbours

2 Evaluation

- Error measures: classification
- Decision threshold
- Error measures: regression

Overfitting

- Introduction
- Regularisation
- Maximum a Posteriori
- Bayesian learning

Optimising Data Usage

Cross-validation

5 Summary

Training ●00000000		Optimising Data Usage	
Training			Ě

Supervised learning:

- We learn from examples
 - Training data: inputs and outputs
 - Representation of the input
 - Representation of the output
- Find a function that maps inputs to outputs
 - That also applies to data we've never seen: generalisation

Assumption

Both training data and future data are sampled independently from the same distribution (i.i.d.)

(日)、

• We cannot consider all functions: inductive bias

Training 0●00000000		Optimising Data Usage 00000	
Training			×××
			_

イロト イポト イヨト イヨト

э

Once we've chosen our representation and hypothesis space, how do we find our hypothesis?

- Optimise an objective function
 - Deal with noise
- Evaluate the machine's performance

Classification: a first attempt

Problem:

- Our input space is vast
- We cannot store all possible input values and evaluate new examples by checking whether we've already seen them
- A simple solution: Nearest Neighbours
 - Store the training data
 - When evaluating new data, find the closest training element and classify according to that element's class
 - Closest: Euclidean distance

k Nearest Neighbours

k Nearest Neighbours

Training ○○○○●○○○○○		Optimising Data Usage 00000	
k-Nearest-Neighbours			
About <i>k</i> NN	٧		Ř

- The Good:
 - Simple and intuitive
 - Powerful often performs well, even on "difficult" data
 - Provides an excellent baseline for more complicated techniques
- The Bad:
 - Requires storage of the complete training set
 - Requires expensive search
 - Problems with Euclidean distance

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Training ○○○○●○○○○○		Optimising Data Usage	
k-Nearest-Neighbou	ırs		
About k	NN		Ň

- The Good:
 - Simple and intuitive
 - Powerful often performs well, even on "difficult" data
 - Provides an excellent baseline for more complicated techniques
- The Bad:
 - Requires storage of the complete training set
 - Requires expensive search
 - Problems with Euclidean distance

Ğ

Training ○○○○●○○○○○		Optimising Data Usage	
k-Nearest-Neighbou			
About k	NN		Ň

- The Good:
 - Simple and intuitive
 - Powerful often performs well, even on "difficult" data
 - Provides an excellent baseline for more complicated techniques
- The Bad:
 - Requires storage of the complete training set
 - Requires expensive search
 - Problems with Euclidean distance

Ř

Training ○○○○●○○○○○		Optimising Data Usage	
k-Nearest-Neighbou			
About k	NN		Ň

- The Good:
 - Simple and intuitive
 - Powerful often performs well, even on "difficult" data
 - Provides an excellent baseline for more complicated techniques
- The Bad:
 - Requires storage of the complete training set
 - Requires expensive search
 - Problems with Euclidean distance

Ř

Training ○○○○●○○○○○		Optimising Data Usage	
k-Nearest-Neighbour	s		
About kN	IN		ě

- The Good:
 - Simple and intuitive
 - Powerful often performs well, even on "difficult" data
 - Provides an excellent baseline for more complicated techniques
- The Bad:
 - Requires storage of the complete training set
 - Requires expensive search
 - Problems with Euclidean distance

ě

59

ě

ě

Training ○○○○○●○○○○		Optimising Data Usage 00000	
k-Nearest-Neighbours			

ł

Training ○○○○○●○○○		Optimising Data Usage	
k-Nearest-Neighbours			
Overfitting			Ň

Overfitting

<≣≯

æ

 Training
 Evaluation
 Overfitting
 Optimising Data Usage
 Summa

 000000000
 000000
 000000
 00000
 0
 0

 k-Nearest-Neighbours
 Vertice
 Vertice
 0
 0
 0

kNN: Why does it work (and why does it fail?)

We split up our space into regions, where we assume that the probability of finding datapoints of a given class is approximately constant.

Estimate the probability: count number of elements in region. This can be done by:

- Creating cells of equal volume
- **②** Growing regions to contain exactly k elements

(日) (同) (日) (日)

kNN: Why does it work (and why does it fail?)

If our regions are sufficiently small, and if our number of elements in each region is sufficiently large, we can estimate the density within a region as:

$$p(\mathbf{x}) = \frac{k}{NV}$$

・ロト ・ 雪 ト ・ ヨ ト

where

- k is the number of elements in the region,
- N is the total number of elements,
- V is the volume of the region

Intelligent Autonomous Systems

(1)

-

Training	Overfitting	Optimising Data Usage	
00000000			
k-Nearest-Neighbours			

kNN: Why does it work (and why does it fail?)

The estimation of $p(\mathbf{x}) = \frac{k}{NV}$ is based on two contradictory requirements:

- \mathcal{R} is small, so that $p(\mathbf{x})$ is approx. constant in the region
- \mathcal{R} is large, so that k large enough.

In kNN, we estimate $p(\mathbf{x})$ by keeping k constant and growing V until it contains exactly k prototypes. Therefore:

- if k is too small, V will be too small and our estimate of p(x)
 will be bad
- if V is too large, $p(\mathbf{x})$ will not be constant in the region, and our estimate will be bad.

Intelligent Autonomous Systems

â

Training	Evaluation	Overfitting	Optimising Data Usage	

Trainingk-Nearest-Neighbours

2 Evaluation

- Error measures: classification
- Decision threshold
- Error measures: regression

3 Overfitting

- Introduction
- Regularisation
- Maximum a Posteriori
- Bayesian learning
- Optimising Data Usage
 - Cross-validation

5 Summary

UNIVERSITY OF AMSTERDAM

Error measures: classification

• Confusion matrix (*m* classes) Estimated class $C_1 \quad \dots \quad C_m$ $\begin{array}{c} \underbrace{\$}_{U} & C_1 \\ \underbrace{\$}_{U} & \vdots \\ \underbrace{\clubsuit}_{U} & \vdots \\ \underbrace{\clubsuit}_{U} & \vdots \\ \underbrace{\clubsuit}_{D} & \vdots \\ n_{m1} & \dots & n_{mm} \end{array}$ • Error measures: Accuracy = $\#_{correct} / \#_{datapoints} = \frac{\sum_i n_{ii}}{\sum_{ij} n_{ij}}$ Error rate = 1 – accuracy

Intelligent Autonomous Systems

	Evaluation 0●0000		Optimising Data Usage		
Two clas	s problems			ě	

• Confusion Matrix

		Estin	Estimated		
		Positive	Negative		
ē	Positive (P)	[TP	FN]		
Ĕ	Negative (N)	L FP	TN		

• Performance measures

Accuracy
$$A = \frac{TP+TN}{P+N}$$

Error rate $= 1 - A = \frac{FP+FN}{P+N}$
Precision $= \frac{TP}{TP+FP}$
Recall $= \frac{TP}{TP+FN}$
f-measure $= \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

IAS Intelligent Autonomous Systems

	Evaluation	Optimising Data Usage	
Decision threshold			
_	.		×

Decision Threshold

• Sometimes we don't want to "just" minimise the error rate

Example: Cancer diagnosis

Misclassifying a diseased person as healthy (FN) results in death, while misclassifying a healthy person (FP) results in additional tests.

• Cost/Loss function: weight the errors according to type

• Example: loss matrix
$$L = \begin{array}{c} Cancer & Normal \\ Cancer & 0 & 1000 \\ Normal & 1 & 0 \end{array}$$

• Minimise the expected loss: for each \mathbf{x} , assign the class j for which $\sum_k L_{kj} p(\mathcal{C}_k | \mathbf{x})$ is minimal

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Intelligent Autonomous Systems

- Plot of True Positive Rate against False Positive Rate
- Each point of the curve corresponds to a different threshold

Ŵ

Area under the curve (AUC)

- The ROC gives a measure of the classification performance
- The Area Under the Curve reflects how well the classifier performs
 - Independently from the specific cost function used

Ŵ

University of Amsterdam

- The ROC gives a measure of the classification performance
- The Area Under the Curve reflects how well the classifier performs
 - Independently from the specific cost function used

Ŵ

- The ROC gives a measure of the classification performance
- The Area Under the Curve reflects how well the classifier performs
 - Independently from the specific cost function used

Ŵ

UNIVERSITY OF AMSTERDAM

- The ROC gives a measure of the classification performance
- The Area Under the Curve reflects how well the classifier performs
 - Independently from the specific cost function used

Ŵ

UNIVERSITY OF AMSTERDAM

- The ROC gives a measure of the classification performance
- The Area Under the Curve reflects how well the classifier performs
 - Independently from the specific cost function used

Ŵ

Intelligent Autonomous Systems

- The ROC gives a measure of the classification performance
- The Area Under the Curve reflects how well the classifier performs
 - Independently from the specific cost function used

Ŵ

Intelligent Autonomous Systems

- The ROC gives a measure of the classification performance
- The Area Under the Curve reflects how well the classifier performs
 - Independently from the specific cost function used

Intelligent Autonomous Systems

Ŵ

UNIVERSITY OF AMSTERDAM

Error measures: regression

Typically: sum-of-squares error function:

$$E_{SSE}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, \mathbf{w}) - t_n \right)^2$$
(2)

• Minimising the SSE is equivalent with maximising the log-likelihood under the assumption of zero-mean Gaussian noise.

Sometimes more convenient: root-mean-square error:

$$E_{RMS}(\mathbf{w}) = \sqrt{2E(\mathbf{w})/N}$$
(3)

- Square root ensures that the error has same scale as target
- Division by *N* allows comparison over data sets of different size

Intelligent Autonomous Systems

JNIVERSITY OF AMSTERDAM

Training	Overfitting	Optimising Data Usage	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Training

• k-Nearest-Neighbours

2 Evaluation

- Error measures: classification
- Decision threshold
- Error measures: regression

Overfitting

- Introduction
- Regularisation
- Maximum a Posteriori
- Bayesian learning
- Optimising Data Usage
 Cross-validation

5 Summary

	Overfitting •0000000000000	Optimising Data Usage 00000	
Introduction			

Overfitting and Generalisation

- Generalisation: learn, from known examples, about unseen examples
- Overfitting: learn properties from the given examples which do not apply to unseen examples
- Evaluate on separate set

(日)、

э

Å

	Overfitting 000000000000000000000000000000000000	Optimising Data Usage 00000	

Example: polynomial regression

- Process: $y = \sin(2\pi x)$
- Observations: corrupted by Gaussian noise def :

$$y = \sin(2\pi x) + \xi$$

with

Intelligent Autonomous Systems

$$\xi \sim \mathcal{N}(0, 0.3)$$

 Attempt to recover a description of the process, using a polynomial function

$$y = w_0 + w_1 x + w_2 x^2 + \cdots$$

Process function

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	Overfitting 000000000000000000000000000000000000	Optimising Data Usage 00000	

Example: polynomial regression

- Process: $y = \sin(2\pi x)$
- Observations: corrupted by Gaussian noise • def :

$$y = \sin(2\pi x) + \xi$$

with

$$\xi \sim \mathcal{N}(0, 0.3)$$

 Attempt to recover a description of the process, using a polynomial function

$$y = w_0 + w_1 x + w_2 x^2 + \cdots$$

	Overfitting 000000000000000000000000000000000000	Optimising Data Usage 00000	

Example: polynomial regression

- Process: $y = \sin(2\pi x)$
- Observations: corrupted by Gaussian noise def :

$$y = \sin(2\pi x) + \xi$$

with

Intelligent Autonomous Systems

$$\xi \sim \mathcal{N}(0, 0.3)$$

 Attempt to recover a description of the process, using a polynomial function

$$y = w_0 + w_1 x + w_2 x^2 + \cdots$$

		Overfitti	ng 000000000	Optimising Data U 00000	
Introduction					
	_	 _			

		Overfitti	ng 000000000	Optimising Data U 00000	
Introduction					
	_	 _			

			(Overfitting ⊃O●OOOOOOOOOOO	Optimising Data Usag 00000	
Introduction						
	_	-				

			(Overfitting ⊃O●OOOOOOOOOOO	Optimising Data Usag 00000	
Introduction						
	_	-				

			(Overfitting ⊃O●OOOOOOOOOOO	Optimising Data Usag 00000	
Introduction						
	_	-				

				Overfitting 000000000000000000000000000000000000	Optimising Data Usage 00000	
Introduction						
	_	_				

				Overfitting 000000000000000000000000000000000000	Optimising Data Usage 00000	
Introduction						
	_	_				

				Overfitting 000000000000000000000000000000000000	Optimising Data Usage	
Introduction						
	_		_			

		Overfitting 00000000000000	Optimising Data Usage	
Illustration	of overfittin	g		Ň

		Overfitting 000000000	Optimising Data Usage	
Introduction				
	_	 _		

UNIVERSITY OF AMSTERDAM

For fixed model complexity (in this case, M = 9), increasing the amount of training data reduces overfitting

		Overfitting	Optimising Data Usage 00000	
Regularisation				
Weights a	and overfit	ting		Š

Weights and overfitting

	M = 0	M = 1	<i>M</i> = 3	<i>M</i> = 6	<i>M</i> = 9
Wo	0.19	0.82	0.31	0.35	0.35
w_1		-1.27	7.99	2.62	232.37
<i>w</i> ₂			-25.43	32.10	-5321.79
W3			17.37	-206.27	48568.00
W4				399.00	-231637.92
W5				-332.71	640038.66
W ₆				105.16	-1061794.80
W7					1042394.73
W ₈					-557680.13
Wg					125200.80

UNIVERSITY OF AMSTERDAM

	Overfitting	Optimising Data Usage 00000	
Regularisation			

Parameter shrinkage

- Penalise overly flexible models
- Add a penalty term to the objective function
- Penalty term depends on model
 - Typically, penalise large parameter values

Example: Polynomial curve fitting

$$\hat{E}(\mathbf{w}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2}_{\text{Objective function}} + \underbrace{\frac{\lambda}{2} ||\mathbf{w}||^2}_{\text{Penalty}}$$

- Parameter λ controls regularisation
 - "How much do you trust the data"
 - Must be set independently

Intelligent Autonomous Systems

JNIVERSITY OF AMSTERDAM

	Overfitting	Optimising Data Usage	
	0000 000 000000		
Regularisation			

Leave w₀ out of the penalty term. Shifting the data should not affect the model's performance

Square penalty w^Tw

- Leads to simple optimisation
- Called ridge regression (stats), weight decay (neural networks)
- $I_1 \text{ norm } \sum_{i=1}^M |w_i|$
 - Cannot be optimised in closed form
 - Sparse solutions (some $w_i = 0$)
 - LASSO: least absolute shrinkage and selection operator
- L_q norm $\sum_{i=1}^M |w_i|^q$

Intelligent Autonomous Systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Training	Overfitting	Optimising Data Usage	
	00000 00 000000		
Regularisation			

Leave w₀ out of the penalty term. Shifting the data should not affect the model's performance

❷ Square penalty w^Tw

- Leads to simple optimisation
- Called ridge regression (stats), weight decay (neural networks)
- 3 L_1 norm $\sum_{i=1}^M |w_i|$
 - Cannot be optimised in closed form
 - Sparse solutions (some $w_i = 0$)
 - LASSO: least absolute shrinkage and selection operator
- L_q norm $\sum_{i=1}^{M} |w_i|^q$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

JNIVERSITY OF AMSTERDAM

Training	Overfitting	Optimising Data Usage	
	0000 00 0000000		
Regularisation			

Leave w₀ out of the penalty term. Shifting the data should not affect the model's performance

❷ Square penalty w^Tw

- Leads to simple optimisation
- Called ridge regression (stats), weight decay (neural networks)
- \bullet L_1 norm $\sum_{i=1}^M |w_i|$
 - Cannot be optimised in closed form
 - Sparse solutions (some $w_i = 0$)
 - LASSO: least absolute shrinkage and selection operator

Training	Overfitting	Optimising Data Usage	
	0000 00 0000000		
Regularisation			

Leave w₀ out of the penalty term. Shifting the data should not affect the model's performance

❷ Square penalty w^Tw

- Leads to simple optimisation
- Called ridge regression (stats), weight decay (neural networks)
- \bullet L_1 norm $\sum_{i=1}^M |w_i|$
 - Cannot be optimised in closed form
 - Sparse solutions (some $w_i = 0$)
 - LASSO: least absolute shrinkage and selection operator

• L_q norm $\sum_{i=1}^M |w_i|^q$

Intelligent Autonomous Systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Called ridge regression, weight decay, other names?
- 2. Mention the elastic-net penalty $\lambda \sum \alpha \beta_i^2 + (1 \alpha) |\beta_i|$

	Overfitting	Optimising Data Usage 00000	
Maximum a Posteriori			

Maximum A Posteriori (MAP) learning

Using Bayes' rule, we have:

$$p(\theta|\mathbf{X}) = rac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$
 (4)

This requires us to place a prior over the parameter values

- Any prior is possible, choose prior to reflect prior knowledge
- If we use a Gaussian distribution with zero mean, this is equivalent to ML learning with parameter shrinkage
- The denominator p(X) = ∫ p(X|θ)p(θ)dθ is often intractable to compute but is constant, so that

$$\arg\max_{\theta} \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \arg\max_{\theta} p(\mathbf{X}|\theta)p(\theta)$$
(5)

• As $|\mathbf{X}| \to \infty$, influence prior vanishes

Intelligent Autonomous Systems

		Overfitting 00000000000000000	Optimising Data Usage	
Maximum a Posterio	ori			
Laplace s	moothing			ě

Conjugate prior:

- functional form of prior leads to posterior with same functional form
- allows on-line, iterative learning: posterior becomes prior for next datapoint
- prior can be interpreted as having seen a number of examples

Laplace smoothing

- Maximum likelihood learning
- Pretend *n* examples of each possible outcome have been observed before starting

Intelligent Autonomous Systems

・ロト・日本・日本・日本・日本・日本

JNIVERSITY OF AMSTERDAM

Training	Overfitting	Optimising Data Usage	
	00000000 00 0000		
Maximum a Posteriori			

Regularisation: Laplace smoothing

Example

I have a coin and want to evaluate $p(head) = \mu^{head}(1-\mu)^{tail}$. If I see a single observation, a head. What is the ML estimate of μ

$$\mu = \frac{1}{1+0} = 1$$

Laplace smoothing: assume you have already seen a number of examples of every possible outcome before you start:

$$\mu = \frac{2}{2+1} = \frac{2}{3} \tag{7}$$

As the amount of observed data grows large, the influence of the smoothing vanishes.

Intelligent Autonomous Systems

Training	Overfitting	Optimising Data Usage	
	00000000 00 0000		
Maximum a Posteriori			

Regularisation: Laplace smoothing

Example

I have a coin and want to evaluate $p(head) = \mu^{head}(1-\mu)^{tail}$. If I see a single observation, a head. What is the ML estimate of μ

$$\mu = \frac{1}{1+0} = 1 \tag{6}$$

Laplace smoothing: assume you have already seen a number of examples of every possible outcome before you start:

$$\mu = \frac{2}{2+1} = \frac{2}{3} \tag{7}$$

As the amount of observed data grows large, the influence of the smoothing vanishes.

Intelligent Autonomous Systems

The Bayesian approach

In fact, we're not really interested in knowing the original distribution that "generated" the data

• We'll never know that anyway

What we really want to do, is to use the knowledge that we have in an optimal way. That is, we want

$$p(t|\mathbf{x},\mathbf{X},\mathbf{t}) = \int p(t|\mathbf{x},\theta) p(\theta|\mathbf{X},\mathbf{t}) d\theta$$
(8)

In effect, we consider all the models (of the form that we have chosen beforehand) that could have generated the data, and weight them their prediction according to how probable they are.

Intelligent Autonomous Systems

JNIVERSITY OF AMSTERDAM

How do we avoid overfitting?

More training data As more training data gets available, more complex models become warranted

Use a simple model The simpler the model, the more likely it will generalise

- Occam's razor
- By making the model too inflexible to fit the noise, we force it to "focus" on the process
- Inductive bias Learn the structure of the data, not the data itself

Penalise complexity Penalise model parameters that make the model complex

Bayesian inference Do not use the best/most likely model: consider all possible models and weigh them according to their likelihood (See lecture 4)

Intelligent Autonomous Systems

	Overfitting	Optimising Data Usage 00000	
Bayesian learning			

- Apparent error rate *E*_A
 - Correct classification on training set
 - Too optimistic due to overfitting
 - Depends on: classifier, training set
- True error rate *E_T*
- Bayes error rate E_B

イロト イポト イヨト イヨト

э

	Overfitting	Optimising Data Usage 00000	

- Apparent error rate *E*_A
 - Correct classification on training set
 - Too optimistic due to overfitting
 - Depends on: classifier, training set
- True error rate E_T
- Bayes error rate E_B

э

Training		Overfitting	Optimising Data Usage	
Bayesian learning	000000			0

- Apparent error rate *E*_A
 - Correct classification on training set
 - Too optimistic due to overfitting
 - Depends on: classifier, training set
- True error rate E_T
- Bayes error rate E_B

Training	Overfitting	Optimising Data Usage	
Bayesian learning			0

- Apparent error rate *E*_A
 - Correct classification on training set
 - Too optimistic due to overfitting
 - Depends on: classifier, training set
- True error rate *E_T*
- Bayes error rate E_B

	Overfitting	Optimising Data Usage	
Bayesian learning			

- Apparent error rate E_A
- True error rate E_T
 - Classification error on infinite test set
 - Expected probability misclassifying randomly chosen pattern
 - Depends on: classifier, data distribution
- Bayes error rate *E*_B

		Overfitting	Optimising Data Usage	
0000000000	000000	000000000000000	00000	
Bayesian learning				

- Apparent error rate E_A
- True error rate E_T
- Bayes error rate E_B
 - Optimal error rate
 - Classification error when classifying based on the true class probabilities

Training 0000000000	Evaluation 000000	Overfitting 00000000000000	Optimising Data Usage	Summary O
1 Tra • •	iining k-Nearest-Neigh	bours		
 Eva E E E 	aluation Error measures: Decision thresho Error measures:	classification Id regression		
 Ov I F F E 	erfitting ntroduction Regularisation Maximum a Pos Bayesian learnin	teriori g		
4 Op	timising Data U	Isage		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

- Cross-validation
- 5 Summary

Train and Test sets: Avoid overfitting

- Use a training set to train the machine
- Use a separate data set to avoid overfitting
- However: This biases the machine towards the separate set
 - Performance on this set is not an unbiased estimate of real-world performance
- Solution: Separate the data into three distinct sets
 - Train Optimise the objective function
 - Validation Model selection
 - Test Estimate performance

In practice, available training data is often limited

 Splitting the data in sets further reduces this Validation

Solution: k-fold cross-validation

Test

• Repeatedly split the data and average the results (here, k = 4)

Train

Test	Validati	on				Гrain		
Test	Train)	Valid	ation			Trair	ı
Test		Tra	in		Val	idati	on	Train
Test			Tra	ain			V	alidation

Leave-one-out and Bootstrapping

- In the limit, k = N where N is the size of the dataset
 - "Leave-one-out": use a validation set of size 1
 - Maximises the use of the data
 - Minimises correlation between train and test sets
 - Computationally expensive
- Cross-validation is sometimes used for error bars:
 - Evaluate how the error varies on different data sets
 - Incorrect: the data sets are not independent
- Improvement: Bootstrap method

Sample N points at random from the data with replacement

The probability for not picking a data point is

$$p(\neg b) = (1 - 1/N)^N \approx 0.368$$
 (9)

The expected number of used data points is therefore

$$p(b) = 1 - p(\neg b) \approx 0.632N$$
 (10)

Intelligent Autonomous Systems

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

		Optimising Data Usage 0000●	
Cross-validation			

Bootstrap accuracy

Estimate the accuracy as follows:

Repeat *L* times

- Estimate A_T by training on the sampled data, testing on the remaining data
- Estimate A_A by training and testing on the sampled data
- The "bootstrap accuracy" is then given by

$$\operatorname{acc} = \frac{1}{L} \sum_{i=1}^{L} \left(0.632 A_{T,i} + 0.368 A_{A,i} \right)$$
 (11)

The variance on the bootstrap samples is a good (low-variance) estimator of the variance on multiple data sets, but it can have a high bias.

Intelligent Autonomous Systems

			Optimising Data Usage 00000	Summary ○
	Fraining ▶ k-Nearest-Neighł	pours		
(2) E	Evaluation Error measures: Decision thresho Error measures:	classification ld regression		
3	Overfitting Introduction Regularisation			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Maximum a Posteriori
- Bayesian learning
- Optimising Data Usage
 - Cross-validation

		Optimising Data Usage	Summary ●
Wran un			1×1

JNIVERSITY OF AMSTERDAM

In today's lecture, we have seen:

- A simple classifier, k-Nearest-Neighbours
- How to evaluate how well a machine performs
- The inherent difficulty of training from a given set of examples, overfitting
- How to avoid overfitting
- How to optimise the use of the data we have

Coming up:

- **Exercise:** Derive ML and MAP parameter estimators for Gaussian distribution
- Lab: Introduction to Matlab
- Next week: we have a look at discriminant-based classifiers

Distributions •00 Univariate distributions

The Gaussian (Normal) Distribution

UNIVERSITY OF AMSTERDAM

Ŵ

Distributions 000 Univariate distributions

The Binomial Distribution

Ř

IAS Intelligent Autonomous Systems Distributions 000

The Bernoulli distribution

Notation

• $x \sim \text{Bern}(\mu)$

Properties

• $p(x) = \mu^{x}(1-\mu)^{1-x}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

•
$$\mathbb{E}[x] = \mu$$

• $var[x] = \mu(1-\mu)$

[Image shamelessly copied from: http://governing.typepad.com]

Intelligent Autonomous Systems