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Training

Supervised learning:

We learn from examples

Training data: inputs and outputs
Representation of the input
Representation of the output

Find a function that maps inputs to outputs

That also applies to data we’ve never seen: generalisation

Assumption

Both training data and future data are sampled
independently from the same distribution (i.i.d.)

We cannot consider all functions: inductive bias
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Training

Once we’ve chosen our representation and hypothesis space, how
do we find our hypothesis?

Optimise an objective function
Deal with noise

Evaluate the machine’s performance
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Classification: a first attempt

Problem:

Our input space is vast

We cannot store all possible input values and evaluate new
examples by checking whether we’ve already seen them

A simple solution: Nearest Neighbours

Store the training data

When evaluating new data, find the closest training element
and classify according to that element’s class

Closest: Euclidean distance
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k-Nearest-Neighbours

k Nearest Neighbours
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k-Nearest-Neighbours

About kNN

The Good:

Simple and intuitive
Powerful — often performs well, even on “difficult” data
Provides an excellent baseline for more complicated techniques

The Bad:

Requires storage of the complete training set
Requires expensive search
Problems with Euclidean distance
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k-Nearest-Neighbours

About kNN

The Good:

Simple and intuitive
Powerful — often performs well, even on “difficult” data
Provides an excellent baseline for more complicated techniques

The Bad:

Requires storage of the complete training set
Requires expensive search
Problems with Euclidean distance
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k-Nearest-Neighbours

So what are we doing here?
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k-Nearest-Neighbours

So what are we doing here?
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k-Nearest-Neighbours

Overfitting
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k-Nearest-Neighbours

kNN: Why does it work (and why does it fail?)

We split up our space into regions, where we assume that the
probability of finding datapoints of a given class is approximately
constant.
Estimate the probability: count number of elements in region.
This can be done by:

1 Creating cells of equal volume

2 Growing regions to contain exactly k elements
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k-Nearest-Neighbours

kNN: Why does it work (and why does it fail?)

If our regions are sufficiently small, and if our number of elements
in each region is sufficiently large, we can estimate the density
within a region as:

p(x) =
k

NV
(1)

where

k is the number of elements in the region,

N is the total number of elements,

V is the volume of the region
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k-Nearest-Neighbours

kNN: Why does it work (and why does it fail?)

The estimation of p(x) = k
NV is based on two contradictory

requirements:

R is small, so that p(x) is approx. constant in the region

R is large, so that k large enough.

In kNN, we estimate p(x) by keeping k constant and growing V
until it contains exactly k prototypes. Therefore:

if k is too small, V will be too small and our estimate of p(x)
will be bad

if V is too large, p(x) will not be constant in the region, and
our estimate will be bad.
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Error measures: classification

Error measures: classification

Confusion matrix (m classes)

Estimated class
C1 . . . Cm

T
ru

e
cl

as
s C1

[
n11 . . . n1m

]
...

...
. . .

...
Cm nm1 . . . nmm

Error measures:

Accuracy = #correct/#datapoints =
∑

i nii∑
ij nij

Error rate = 1− accuracy
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Error measures: classification

Two class problems

Confusion Matrix

Estimated

T
ru
e Positive (P)

Negative (N)

[Positive Negative
TP FN
FP TN

]

Performance measures

Accuracy A = TP+TN
P+N

Error rate = 1− A = FP+FN
P+N

Precision = TP
TP+FP

Recall = TP
TP+FN

f-measure = 2·precision·recall
precision+recall
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Decision threshold

Decision Threshold

Sometimes we don’t want to “just” minimise the error rate

Example: Cancer diagnosis

Misclassifying a diseased person as healthy (FN)
results in death, while misclassifying a healthy person
(FP) results in additional tests.

Cost/Loss function: weight the errors according to type

Example: loss matrix L =
Cancer
Normal

[Cancer Normal
0 1000
1 0

]
Minimise the expected loss: for each x, assign the class j for
which

∑
k Lkjp(Ck |x) is minimal
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Decision threshold

Receiver Operating Characteristic (ROC)

Plot of True Positive Rate against False Positive Rate

Each point of the curve corresponds to a different threshold

Example
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Decision threshold

Area under the curve (AUC)

The ROC gives a measure of the classification performance

The Area Under the Curve reflects how well the classifier
performs

Independently from the specific cost function used
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Error measures: regression

Error measures: regression

Typically: sum-of-squares error function:

ESSE (w) =
1

2

N∑
n=1

(
y(xn,w)− tn

)2
(2)

Minimising the SSE is equivalent with maximising the
log-likelihood under the assumption of zero-mean Gaussian
noise.

Sometimes more convenient: root-mean-square error:

ERMS(w) =
√

2E (w)/N (3)

Square root ensures that the error has same scale as target

Division by N allows comparison over data sets of different
size
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Introduction

Overfitting and Generalisation

Generalisation: learn, from known examples, about unseen
examples

Overfitting: learn properties from the given examples which
do not apply to unseen examples

Evaluate on separate set
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Introduction

Example: polynomial regression

Process: y = sin(2πx)

Observations: corrupted by
Gaussian noise def :

y = sin(2πx) + ξ

with

ξ ∼ N (0, 0.3)

Attempt to recover a
description of the process,
using a polynomial function

y = w0 + w1x + w2x
2 + · · ·

-1

0

1

0 0.5 1

y

x

Process function
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Introduction

Illustration of overfitting

Example
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Introduction

More data

For fixed model complexity (in this case, M = 9), increasing the
amount of training data reduces overfitting

Example
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Regularisation

Weights and overfitting

M = 0 M = 1 M = 3 M = 6 M = 9

w0 0.19 0.82 0.31 0.35 0.35
w1 -1.27 7.99 2.62 232.37
w2 -25.43 32.10 -5321.79
w3 17.37 -206.27 48568.00
w4 399.00 -231637.92
w5 -332.71 640038.66
w6 105.16 -1061794.80
w7 1042394.73
w8 -557680.13
w9 125200.80
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Regularisation

Parameter shrinkage

Penalise overly flexible models

Add a penalty term to the objective function

Penalty term depends on model

Typically, penalise large parameter values

Example: Polynomial curve fitting

Ê (w) =
1

2

N∑
n=1

(y(xn,w)− tn)2

︸ ︷︷ ︸
Objective function

+
λ

2
||w||2︸ ︷︷ ︸

Penalty

Parameter λ controls regularisation

“How much do you trust the data”
Must be set independently
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Regularisation

Parameter shrinkage

Example: Polynomial curve fitting
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Regularisation

Notes about parameter shrinkage

1 Leave w0 out of the penalty term.
Shifting the data should not affect the
model’s performance

2 Square penalty w>w
Leads to simple optimisation
Called ridge regression (stats),
weight decay (neural networks)

3 L1 norm
∑M

i=1 |wi |
Cannot be optimised in closed form
Sparse solutions (some wi = 0)
LASSO: least absolute shrinkage and
selection operator

4 Lq norm
∑M

i=1 |wi |q
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Regularisation
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Leads to simple optimisation
Called ridge regression (stats),
weight decay (neural networks)

3 L1 norm
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Cannot be optimised in closed form
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4 Lq norm
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Notes about parameter shrinkage

1 Leave w0 out of the penalty term.
Shifting the data should not affect the
model’s performance

2 Square penalty w>w
Leads to simple optimisation
Called ridge regression (stats),
weight decay (neural networks)

3 L1 norm
∑M

i=1 |wi |
Cannot be optimised in closed form
Sparse solutions (some wi = 0)
LASSO: least absolute shrinkage and
selection operator

4 Lq norm
∑M

i=1 |wi |q

w2

w1

ŵ

w∗

q=0.5

2
0
1
2
-1
0
-2
2

Lecture 2

Overfitting

Regularisation

Notes about parameter shrinkage

1. Called ridge regression, weight decay, other names?
2. Mention the elastic-net penalty λ

∑
αβ2

i + (1− α)|βi |
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Maximum a Posteriori

Maximum A Posteriori (MAP) learning

Using Bayes’ rule, we have:

p(θ|XXX) =
p(XXX|θ)p(θ)

p(XXX)
(4)

This requires us to place a prior over the parameter values

Any prior is possible, choose prior to reflect prior knowledge

If we use a Gaussian distribution with zero mean, this is
equivalent to ML learning with parameter shrinkage

The denominator p(XXX) =
∫
p(XXX|θ)p(θ)dθ is often intractable

to compute but is constant, so that

arg max
θ

p(XXX|θ)p(θ)

p(XXX)
= arg max

θ
p(XXX|θ)p(θ) (5)

As |XXX| → ∞, influence prior vanishesIASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Training Evaluation Overfitting Optimising Data Usage Summary

Maximum a Posteriori

Laplace smoothing

Conjugate prior:

functional form of prior leads to posterior with same
functional form

allows on-line, iterative learning: posterior becomes prior for
next datapoint

prior can be interpreted as having seen a number of examples

Laplace smoothing

Maximum likelihood learning

Pretend n examples of each possible outcome have been
observed before starting
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Maximum a Posteriori

Regularisation: Laplace smoothing

Example

I have a coin and want to evaluate p(head) = µhead(1− µ)tail. If I
see a single observation, a head. What is the ML estimate of µ

µ =
1

1 + 0
= 1 (6)

Laplace smoothing: assume you have already seen a number of
examples of every possible outcome before you start:

µ =
2

2 + 1
=

2

3
(7)

As the amount of observed data grows large, the influence of the
smoothing vanishes.
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Maximum a Posteriori
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Bayesian learning

The Bayesian approach

In fact, we’re not really interested in knowing the original
distribution that “generated” the data

We’ll never know that anyway

What we really want to do, is to use the knowledge that we have
in an optimal way. That is, we want

p(t|x,XXX, ttt) =

∫
p(t|x,θ)p(θ|XXX, ttt)dθ (8)

In effect, we consider all the models (of the form that we have
chosen beforehand) that could have generated the data, and
weight them their prediction according to how probable they are.
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Bayesian learning

How do we avoid overfitting?

More training data As more training data gets available, more
complex models become warranted

Use a simple model The simpler the model, the more likely it will
generalise

Occam’s razor
By making the model too inflexible to fit the
noise, we force it to “focus” on the process
Inductive bias — Learn the structure of the
data, not the data itself

Penalise complexity Penalise model parameters that make the
model complex

Bayesian inference Do not use the best/most likely model:
consider all possible models and weigh them
according to their likelihood (See lecture 4)
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Bayesian learning

Measures of discriminability

Apparent error rate EA

Correct classification on training set
Too optimistic due to overfitting
Depends on: classifier,training set

True error rate ET

Bayes error rate EB
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Bayesian learning

Measures of discriminability

Apparent error rate EA

Correct classification on training set
Too optimistic due to overfitting
Depends on: classifier,training set

True error rate ET
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Bayesian learning

Measures of discriminability

Apparent error rate EA

True error rate ET

Classification error on infinite test set
Expected probability misclassifying randomly chosen pattern
Depends on: classifier, data distribution

Bayes error rate EB
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Bayesian learning

Measures of discriminability

Apparent error rate EA

True error rate ET

Bayes error rate EB

Optimal error rate
Classification error when classifying based on the true class
probabilities
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1 Training
k-Nearest-Neighbours

2 Evaluation
Error measures: classification
Decision threshold
Error measures: regression

3 Overfitting
Introduction
Regularisation
Maximum a Posteriori
Bayesian learning

4 Optimising Data Usage
Cross-validation

5 Summary
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Cross-validation

Train and Test sets: Avoid overfitting

Use a training set to train the machine

Use a separate data set to avoid overfitting

However: This biases the machine towards the separate set

Performance on this set is not an unbiased estimate of
real-world performance

Solution: Separate the data into three distinct sets

Train Optimise the objective function
Validation Model selection

Test Estimate performance
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Cross-validation

Cross-Validation

In practice, available training data is often limited

Splitting the data in sets further reduces this

Test Validation Train

Solution: k-fold cross-validation

Repeatedly split the data and average the results (here, k = 4)

Test Validation Train

Test ValidationTrain Train

Test ValidationTrain Train

Test ValidationTrain
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Cross-validation

Leave-one-out and Bootstrapping

In the limit, k = N where N is the size of the dataset

“Leave-one-out”: use a validation set of size 1
Maximises the use of the data
Minimises correlation between train and test sets
Computationally expensive

Cross-validation is sometimes used for error bars:

Evaluate how the error varies on different data sets
Incorrect: the data sets are not independent

Improvement: Bootstrap method
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Cross-validation

Bootstrapping

Sample N points at random from the data with replacement

Training

The probability for not picking a data point is

p(¬b) = (1− 1/N)N ≈ 0.368 (9)

The expected number of used data points is therefore

p(b) = 1− p(¬b) ≈ 0.632N (10)
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Cross-validation

Bootstrap accuracy

Estimate the accuracy as follows:
Repeat L times

Estimate AT by training on the sampled data, testing on the
remaining data

Estimate AA by training and testing on the sampled data

The “bootstrap accuracy” is then given by

acc =
1

L

L∑
i=1

(
0.632AT ,i + 0.368AA,i

)
(11)

The variance on the bootstrap samples is a good (low-variance)
estimator of the variance on multiple data sets, but it can have a
high bias.

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Training Evaluation Overfitting Optimising Data Usage Summary

1 Training
k-Nearest-Neighbours

2 Evaluation
Error measures: classification
Decision threshold
Error measures: regression

3 Overfitting
Introduction
Regularisation
Maximum a Posteriori
Bayesian learning

4 Optimising Data Usage
Cross-validation

5 Summary



Training Evaluation Overfitting Optimising Data Usage Summary

Wrap up

In today’s lecture, we have seen:

A simple classifier, k-Nearest-Neighbours

How to evaluate how well a machine performs

The inherent difficulty of training from a given set of
examples, overfitting

How to avoid overfitting

How to optimise the use of the data we have

Coming up:

Exercise: Derive ML and MAP parameter estimators for
Gaussian distribution

Lab: Introduction to Matlab

Next week: we have a look at discriminant-based classifiers
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6 Distributions
Univariate distributions



Distributions

Univariate distributions

The Gaussian (Normal) Distribution

0

0.4

-5σ -4σ -3σ -2σ -σ µ +σ +2σ +3σ +4σ +5σ

Notation

x ∼ N (µ, σ)

Properties

p(x) = 1√
2πσ

exp− (x−µ)2

2σ2

E[x ] = µ

var[x ] = σ2

back
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Distributions

Univariate distributions

The Binomial Distribution

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

N=10, µ = 0.25

Notation

x ∼ Bin(N, µ)

Properties

p(x) =

(
N
x

)
µx(1− µ)N−x

where(
N
x

)
=

x!

x!(N − x!)

E[x ] = Nµ

var[x ] = Nµ(1− µ)
back
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Distributions

Univariate distributions

The Bernoulli distribution

Notation

x ∼ Bern(µ)

Properties

p(x) = µx(1− µ)1−x

E[x ] = µ

var[x ] = µ(1− µ)

[Image shamelessly copied from: http://governing.typepad.com]

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M


	Training
	k-Nearest-Neighbours

	Evaluation
	Error measures: classification
	Decision threshold
	Error measures: regression

	Overfitting
	Introduction
	Regularisation
	Maximum a Posteriori
	Bayesian learning

	Optimising Data Usage
	Cross-validation

	Summary
	Appendix
	Distributions
	Univariate distributions



